Forgot password?
 Create new account
View 218|Reply 3

[几何] 椭圆中心张定角所对弦的包络一般是四次曲线

[Copy link]

22

Threads

70

Posts

607

Credits

Credits
607

Show all posts

lxz2336831534 Posted at 2023-5-13 13:47:36 From the mobile phone |Read mode
Last edited by hbghlyj at 2025-4-9 22:04:00椭圆中心张定角对弦的包络是可退化四次曲线,当定角为90度时,退化为两个重合的圆。现已求出张定角所对弦关于该椭圆的极点轨迹Ω,还求出该弦带一个未知系数λ的包络线方程,请问能否给出λ的值? 如图所示 Screenshot_2023-05-13-13-17-31-01.jpg Screenshot_2023-05-13-13-19-32-47.jpg IMG_20230513_133654.jpg \[ \begin{aligned} & \Gamma: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1\quad\{(A, B) \subset \Gamma, \frac{c \in \Omega}{T 为切点} \\ &\angle A O B=\theta \\ & \Omega: \frac{\frac{2}{a \cdot b} \sqrt{\frac{x^2}{a^2}+\frac{y^2}{b^2}-1}}{\frac{a^2+b^2}{a^2 b^2}-\frac{x^2}{a^2}-\frac{y^2}{b^4}}=\tan \theta \end{aligned} \] \[ \psi: \quad \lambda\left(x^2+y^2\right)^2-\left(\frac{b^2+a^2 t^2}{a^2 b^2}+\frac{\lambda a^2 b^2}{b^2+a^2 t^2}\right) X^2-\left(\frac{a^2+b^2 r^2}{a^2 b^2}+\frac{\lambda a^2 b^2}{a^2+b^2 t^2}\right) Y^2+1=0 \] \[ \text {其中} p t=\tan \frac{\theta}{2}, \lambda \neq 0 \] $\psi$为 $A B$ 的包络,$ \lambda$是与$a^2, b^2, \tan^2 \frac{\theta}{2}$ 有关的系数。

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-5-13 13:55:28
这类曲线系以及绘图 @hbghlyj 比较擅长. 虽不明白此问题有何背景, 不过个人想法: 在焦点研究同样的东西应该更有价值, 结果也应该更漂亮.

22

Threads

70

Posts

607

Credits

Credits
607

Show all posts

 Author| lxz2336831534 Posted at 2023-5-13 14:05:53 From the mobile phone
若过同一定点的两弦的斜率存在一个对合关系,例如αk1k2+β(k1+k2)+1=0,则该定点所对张角弦的包络一般为二次曲线,否则一般为四次曲线,,抛物线除外

22

Threads

70

Posts

607

Credits

Credits
607

Show all posts

 Author| lxz2336831534 Posted at 12 hr ago From the mobile phone
顶顶😄😂
题中所求包络线,似乎是一个圆环截面
或者重虚圆点四次曲线

手机版Mobile version|Leisure Math Forum

2025-4-20 21:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list