Forgot password?
 Register account
View 2745|Reply 3

[几何] 各类锥线的重心poncelet锥线

[Copy link]

36

Threads

113

Posts

930

Credits

Credits
930

Show all posts

1+1=? Posted 2025-6-2 17:23 |Read mode
Last edited by 1+1=? 2025-6-2 17:29证明:若锥线内接三角形的三边不过任何点,且该三角形的重心为定点,则该三角形三边和另外一个锥线相切(可退化)
下给出重心$(λ,0)$在$x$轴上的情况:
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 $的重心poncelet锥线为
$$\frac{(2 x-3 λ)^{2} }{a^{2} } +\frac{y^{2} }{\frac{b^{2}(a^{2}-9λ^{2}  )  }{4a^{2} } } =1$$
抛物线$y^{2} =2px$的重心poncelet锥线为
$$y^{2} =8p(x-\frac{3λ}{2} )$$

36

Threads

113

Posts

930

Credits

Credits
930

Show all posts

 Author| 1+1=? Posted 2025-6-2 17:30 From mobile phone
可知以焦点为重心的抛物线内接三角形必定是钝角三角形

36

Threads

113

Posts

930

Credits

Credits
930

Show all posts

 Author| 1+1=? Posted 2025-6-2 17:35 From mobile phone
如何证明若锥线内接三角形垂心,外心,九点圆心,一个二次点关于该三角形的等角共轭点 ,这些点之一为定点时,该三角形三边均和一个特殊锥形相切呢

Comment

如何证明垂心彭赛列锥线中,垂心只能是锥线的焦点?以及如何求出垂心在x轴上的彭赛列锥线  Posted 2025-6-3 16:01

Mobile version|Discuz Math Forum

2025-6-5 07:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit