Forgot password?
 Create new account
View 108|Reply 3

[几何] 双心五边形 不知应该取哪个因式

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2024-12-29 08:53:56 |Read mode
相关:mathworld.wolfram.com/PonceletsPorism.html
hejoseph 发表于 2017-6-13 09:13
把 $R$、$r$、$d$ 代入那个式子,因式分解后,简单的那个因式是三角形的情形,复杂的那个因式才是五边形的 ...

Cayley closure conditions中,
取$n=3$得$a_2=0$
取$C$为圆$x^2+y^2=R^2$,$D$为圆$(x-d)^2+y^2=r^2$
  1. SeriesCoefficient[Sqrt[Det[t{{1,0,0},{0,1,0},{0,0,-R^2}}+{{1,0,-d},{0,1,0},{-d,0,-r^2+d^2}}]],{t,0,2}]
Copy the Code

$4 r^2 R^2-R^4+2 R^2 d^2-d^4=0$
分解得$d^2=R^2-2 r R$,即Euler公式

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-29 09:02:23

双心四边形

Cayley closure conditions中,
取$n=4$得$a_3=0$
取$C$为圆$x^2+y^2=R^2$,$D$为圆$(x-d)^2+y^2=r^2$
  1. SeriesCoefficient[Sqrt[Det[t{{1,0,0},{0,1,0},{0,0,-R^2}}+{{1,0,-d},{0,1,0},{-d,0,-r^2+d^2}}]],{t,0,3}]
Copy the Code

$d^6-2 d^4 r^2-3 d^4 R^2+3 d^2 R^4+2 r^2 R^4-R^6=0$
分解得$d^4-2 d^2 r^2-2 d^2 R^2-2 r^2 R^2+R^4$,即$2r^{2}(R^{2}+d^{2})=(R^{2}-d^{2})^{2}$,即Fuss公式

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-29 09:08:49

双心五边形

Cayley closure conditions中,
取$n=5$得$a_2a_4-a_3^2=0$
取$C$为圆$x^2+y^2=R^2$,$D$为圆$(x-d)^2+y^2=r^2$
  1. {a2,a3,a4}=SeriesCoefficient[Sqrt[Det[t{{1,0,0},{0,1,0},{0,0,-R^2}}+{{1,0,-d},{0,1,0},{-d,0,-r^2+d^2}}]],{t,0,#}]&/@{2,3,4};
  2. Factor[a2 a4 - a3^2]
Copy the Code

$0=\left(d^6-2 d^4 r R-3 d^4 R^2+8 d^2 r^3 R-4 d^2 r^2 R^2+4 d^2 r R^3+3 d^2 R^4+4 r^2 R^4-2 r R^5-R^6\right) \left(-d^6-2 d^4 r R+3 d^4 R^2+8 d^2 r^3 R+4 d^2 r^2 R^2+4 d^2 r R^3-3 d^2 R^4-4 r^2 R^4-2 r R^5+R^6\right)$
有两个因式,不知应该取哪个

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-29 09:13:11

双心六边形

Cayley closure conditions中,
取$n=6$得$a_3a_5-a_4^2=0$
取$C$为圆$x^2+y^2=R^2$,$D$为圆$(x-d)^2+y^2=r^2$
  1. {a3,a4,a5}=SeriesCoefficient[Sqrt[Det[t{{1,0,0},{0,1,0},{0,0,-R^2}}+{{1,0,-d},{0,1,0},{-d,0,-r^2+d^2}}]],{t,0,#}]&/@{3,4,5};
  2. Factor[a3 a5 - a4^2]
Copy the Code

$\left(d^2+2 d r-R^2\right) \left(d^2+2 r R-R^2\right) \left(-d^2+2 d r+R^2\right) \left(-d^2+2 r R+R^2\right) \left(-3 d^8+4 d^6 r^2+12 d^6 R^2-4 d^4 r^2 R^2-18 d^4 R^4+16 d^2 r^4 R^2-4 d^2 r^2 R^4+12 d^2 R^6+4 r^2 R^6-3 R^8\right)=0$
取最后一个因式,$-3 d^8+4 d^6 r^2+12 d^6 R^2-4 d^4 r^2 R^2-18 d^4 R^4+16 d^2 r^4 R^2-4 d^2 r^2 R^4+12 d^2 R^6+4 r^2 R^6-3 R^8=0$

手机版Mobile version|Leisure Math Forum

2025-4-21 14:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list