Forgot password?
 Register account
View 260|Reply 4

[函数] Tan函数方程

[Copy link]

3152

Threads

7905

Posts

610K

Credits

Credits
64068
QQ

Show all posts

hbghlyj Posted 2025-3-1 03:34 |Read mode
$$
f(x+y+z)=\frac{f(x)+f(y)+f(z)-f(x) f(y) f(z)}{1-f(x) f(y)-f(y) f(z)-f(z) f(x)}
$$
如果 $f$ 是可导函数,对所有 $x,y,z$ 都满足此方程则 $f(x)=\tan(cx)$

3152

Threads

7905

Posts

610K

Credits

Credits
64068
QQ

Show all posts

 Author| hbghlyj Posted 2025-3-2 18:39
如果一个可微函数 $f$ 满足 $f(x+y+z)=\frac{f(x)+f(y)+f(z)-f(x) f(y) f(z)}{1-f(x) f(y)-f(y) f(z)-f(z) f(x)} $,那么 $f(x)=\tan (c x)$,其中 $c$ 是任意实常数。
设 $u=x+y+z$
那么函数方程变为
$$
f(u)=\frac{f(x)+f(y)+f(z)-f(x) f(y) f(z)}{1-f(x) f(y)-f(y) f(z)-f(z) f(x)}
$$
$$
\begin{align*}
& f'(u) \cdot \frac{\partial u}{\partial x}= \\
& {\left[\frac{\partial}{\partial x}(f(x)+f(y)+f(z)-f(x) f(y) f(z))(1-f(x) f(y)-f(y) f(z)-f(z) f(x))\right.} \\
& \left.-(f(x)+f(y)+f(z)-f(x) f(y) f(z))\left(-\frac{\partial}{\partial x}(f(x) f(y)+f(y) f(z)+f(z) f(x))\right) \right]\\
&  \cdot \frac{1}{(1-f(x) f(y)-f(y) f(z)-f(z) f(x))^{2}}
\end{align*}
$$
现在,注意到
$$
\frac{\partial u}{\partial x}=\frac{\partial}{\partial x}(x+y+z)=1
$$
$$
\begin{aligned}
& f'(u)=\frac{f'(x)+f'(x) f^{2}(y) f^{2}(z)+f'(x) f^{2}(y)+f'(x) f^{2}(z)}{(1-f(x) f(y)-f(y) f(z)-f(z) f(x))^{2}} \\
& =\frac{f'(x)\left(1+f^{2}(y) f^{2}(z)+f^{2}(y)+f^{2}(z)\right)}{(1-f(x) f(y)-f(y) f(z)-f(z) f(x))^{2}}
\end{aligned}
$$
$$
f'(u)=\frac{\partial u}{\partial y}=\frac{f'(y)\left(1+f^{2}(x) f^{2}(z)+f^{2}(x)+f^{2}(z)\right)}{(1-f(x) f(y)-f(y) f(z)-f(z) f(x))^{2}}
$$
$$
f'(x)\left(1+f^{2}(y)\right)\left(1+f^{2}(z)\right)=f'(y)\left(1+f^{2}(x)\right)\left(1+f^{2}(z)\right)
$$

这个方程可以分离为
$$
\frac{f'(x)}{\left(1+f^{2}(x)\right)}=\frac{f'(y)}{\left(1+f^{2}(y)\right)} .
$$
因为 $\left(1+f^{2}(x)\right) \neq 0$ 对于任何 $x$,同样适用于 $y$ 和 $z$ 的类似项。
$$
\frac{f'(x)}{1+f^{2}(x)}=c
$$
设 $v=f(x),\int \frac{d v}{1+v^{2}}=\int c$ 得 $\tan ^{-1} v=c x+d$ 其中 $d$ 是任意常数。
$$
\begin{aligned}
\text { 因此 } v & =\tan (c x+d) \\
f(x) & =\tan (c x+d)
\end{aligned}
$$
在提出的函数方程中代入 $x=y=z=0$:
$$
f(0)\left[1+(f(0))^{2}\right]=0
$$
这意味着 $f(0)=0$

使用这个初始条件,我们有 $\tan (d)=0$ 其中 $d=n \pi$ 对于任意整数 $n$。由于 $f(x)=\tan (c x+d)$,
$$
f(x)=\tan (c x) .
$$
这完成了证明。

参考文献
[1] Aczél, J.: On applications and theory of functional equations, Elsevier, 1969.
[2] Aczél, J. and Dhombres, J.: Functional equations in several variables, Cambridge Univ. Press, 1989.
[3] Castillo, E., Gutiérrez, J.M. and Iglesias, A. : Solving a functional equation, Mathematica J. 5,, 82-86, 1995.B.Y.: A simple characterization of generalized Robertason-Walker spacetimes, Gen. Rel. Grav. 46 (2014), 1833 (5 pp.).
[4] Efthimiou, C.: Introduction to functional equations, AMS, 2011.
[5] Small, C. G.: Functional equations and how to solve them, Springer Science and Business Media, Apr. 3, 2007, Mathematics, 131 pages,.

414

Threads

905

Posts

110K

Credits

Credits
10998

Show all posts

lemondian Posted 2025-3-3 09:50
反过来:如果$f(x)=\tan(cx)$,其中$c$是任意实常数,那么还有这个等式吗?

Comment

?你是认真的吗?这还用问?  Posted 2025-3-3 12:16

Mobile version|Discuz Math Forum

2025-6-4 17:19 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit