Forgot password?
 Create new account
View 105|Reply 3

[函数] 三角函数余代数

[Copy link]

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

hbghlyj Posted at 2025-3-19 22:22:12 |Read mode
web.archive.org/web/20100529120958/http://www … sraianu/coalgfor.pdf
Δ: C → C ⊗ C 满足
Δ(s) = s ⊗ c + c ⊗ s
Δ(c) = c ⊗ c − s ⊗ s

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

 Author| hbghlyj Posted at 2025-3-19 22:28:28
第8页例子:\[
\mathcal{C}(R)=\left\{(a, b) \in R \times R \mid a^2+b^2=1\right\},
\]
其中
\[
(a, b) \cdot(c, d)=(a c-b d, a d+b c) .
\]

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

 Author| hbghlyj Posted at 2025-3-19 22:46:46

证明三角函数余代数是余代数

见 Sorin Dăscălescu《Hopf Algebras: An Introduction》第20页
Exercise 1.1.5 Let $C$ be a $k$-space with basis $\{s, c\}$. We define $\Delta: C \rightarrow$ $C \otimes C$ and $\varepsilon: C \rightarrow k$ by
\[
\begin{aligned}
\Delta(s) & =s \otimes c+c \otimes s \\
\Delta(c) & =c \otimes c-s \otimes s \\
\varepsilon(s) & =0 \\
\varepsilon(c) & =1
\end{aligned}
\]
Show that $(C, \Delta, \varepsilon)$ is a coalgebra.
Solution
We have
\[
(I \otimes \Delta) \Delta(s)=(\Delta \otimes I) \Delta(s)=s \otimes c \otimes c+c \otimes s \otimes c+c \otimes c \otimes s-s \otimes s \otimes s
\]
and
\[
(I \otimes \Delta) \Delta(c)=(\Delta \otimes I) \Delta(c)=c \otimes c \otimes c-s \otimes s \otimes c-s \otimes c \otimes s-c \otimes s \otimes s
\]
The counit property is obvious.

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

 Author| hbghlyj Posted at 2025-3-19 22:49:49
可把 $C\otimes C$ 的元素视作二元齐次多项式。
coassociativity 是先作代换X→X+Z展开,再作代换X→X+Y,展开,等于先作代换X→X+Y,展开,再作代换Y→Y+Z,展开。
counit property 是说把 X+Y 代入 f(X) 再令 Y=0 等于原来的齐次多项式 f(X).

手机版Mobile version|Leisure Math Forum

2025-4-21 01:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list