Forgot password?
 Create new account
View 127|Reply 2

[概率/统计] 到原点的期望次数

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2025-3-12 22:38:17 |Read mode
Last edited by hbghlyj at 2025-3-22 21:37:23数轴上一质点初始位置是原点O(此时记为1次),每一秒向左或向右移动一次(左右概率各为0.5)(2楼说得对,果然忘了打,每次移动一个单位),求到2n秒时,到达O点的期望次数.

(deepseek得出的答案是$\frac{(2n+1)C_{2n}^n}{4^n}$)

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2025-3-13 14:59:50
你这说的也太不清楚了,什么叫做向左或向右移动一次?每次移动距离多少也不说,咋做?

行了,我就当你说的是每次移动1个单位好了

AI给的那个答案是错的
当然这可能和你的问法有关,它不见得完全理解了你的问题

令$X_n$为$n$秒时所在位置,则
\[P_{2n}(X_{2n}=0)=C_{2n}^n\cdot\frac{1}{2^{2n}}\]
\[P_{2n}(X_{2n}=2)=P_{2n}(X_{2n}=-2)=C_{2n}^{n-1}\cdot\frac{1}{2^{2n}}\]

令$N_n$为$n$秒时已经到达$O$的次数,则有
\[P_{2n+2}(N_{2n+2}=N_{2n}+1|N_{2n})=P_{2n}(X_{2n}=0)\cdot P(X_{2n+1}=\pm1,X_{2n+2}=0|X_{2n}=0)\]
\[+P_{2n}(X_{2n}=2)\cdot P(X_{2n+1}=1,X_{2n+2}=0|X_{2n}=2)\]
\[+P_{2n}(X_{2n}=-2)\cdot P(X_{2n+1}=-1,X_{2n+2}=0|X_{2n}=-2)\]
\[=C_{2n}^n\cdot \frac{1}{2^{2n+1}}+C_{2n}^{n-1}\cdot\frac{1}{2^{2n+2}}+C_{2n}^{n-1}\cdot\frac{1}{2^{2n+2}}\]
\[=(C_{2n}^{n}+C_{2n}^{n-1})\cdot\frac{1}{2^{2n+1}}\]

于是期望
\[E(N_{2n+2}|N_{2n})=(C_{2n}^{n}+C_{2n}^{n-1})\cdot\frac{1}{2^{2n+1}}(N_{2n}+1)+\left[1-(C_{2n}^{n}+C_{2n}^{n-1})\cdot\frac{1}{2^{2n+1}}\right]N_{2n}\]
\[=N_{2n}+(C_{2n}^{n}+C_{2n}^{n-1})\cdot\frac{1}{2^{2n+1}}\]
\[E(N_{2n+2})=E[E(N_{2n+2}|N_{2n})]=E[N_{2n}]+(C_{2n}^{n}+C_{2n}^{n-1})\cdot\frac{1}{2^{2n+1}}\]
注意$E(N_{2})=\frac{3}{2}$,于是
\[E(N_{2n})=\frac{3}{2}+\sum_{k=1}^{n-1}(C_{2k}^{k}+C_{2k}^{k-1})\cdot\frac{1}{2^{2k+1}}\]
\[=\frac{(n+1)C_{2n+1}^n}{4^n}\]


另一种做法计算更简单,不过理解起来相对没那么容易
令事件
\[Y_n=\begin{cases}Y_n=1,\mbox{如果}X_n=0\\Y_n=0,\mbox{如果}X_n\ne 0\end{cases}\]

\[N_n=Y_0+Y_1+Y_2+...+Y_n\]
\[E(N_n)=E(Y_0)+E(Y_1)+...+E(Y_n)\]
显然$Y_{2k+1}=0$,因此
\[E(N_{2n})=E(Y_0)+E(Y_2)+...+E(Y_{2n})\]

其中
\[P(Y_{2k}=1)=P(X_{2k}=0)=C_{2k}^k\cdot\frac{1}{2^{2k}}\]
\[E(Y_{2k})=1\cdot P(Y_{2k}=1)+0\cdot P(Y_{2k}=0)=C_{2k}^k\cdot\frac{1}{2^{2k}}\]
故此
\[E(N_{2n})=1+\sum_{k=1}^nC_{2k}^k\cdot\frac{1}{2^{2k}}=\frac{(n+1)C_{2n+1}^n}{4^n}\]

Comment

谢谢,答案一致的,小伙看明白了你的第2个解答,他自称用生成函数暴力解的.  Posted at 2025-3-15 17:52

手机版Mobile version|Leisure Math Forum

2025-4-20 22:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list