|
original poster
hbghlyj
posted 2025-8-9 13:00
Example where strict inequality occurs
Let $F=\mathbb Q$. Let $\alpha=\sqrt[3]{2}$ and let $\omega$ be a primitive cube root of unity. Put
$$
L_1=\mathbb Q(\alpha),\qquad L_2=\mathbb Q(\omega\alpha).
$$
Both $L_1$ and $L_2$ are degree $3$ over $\mathbb Q$: $[L_1:\mathbb Q]=[L_2:\mathbb Q]=3$ because each is generated by a root of $x^3-2$, which is irreducible over $\mathbb Q$.
Their common Galois closure is the splitting field of $x^3-2$,
$$
E=\mathbb Q(\alpha,\omega)=\mathbb Q(\alpha,\omega\alpha),
$$
and $[E:\mathbb Q]=6$ (well-known — the Galois group is $S_3$). Now check the four parts of the diamond:
- The intersection $K:=L_1\cap L_2$ is $\mathbb Q$. (No nontrivial subfield is shared — the two cubic subfields are different embeddings of the same irreducible polynomial into $E$.)
- The compositum $L_1L_2$ is the whole splitting field $E$, so $[L_1L_2:\mathbb Q]=6$.
Now compute the inequality:
$$
[L_1L_2:\mathbb Q]\,[K:\mathbb Q]=6\cdot 1 = 6
\qquad\text{while}\qquad
[L_1:\mathbb Q]\,[L_2:\mathbb Q]=3\cdot 3 = 9.
$$
So we have a strict inequality
$$
6<9,
$$
i.e. $[L_1L_2:F][L_1\cap L_2:F] < [L_1:F][L_2:F]$.
That shows the tensor map $\mu:L_1\otimes_{\mathbb Q}L_2\to L_1L_2$ is not injective — a kernel element is:
$$\theta=2(1\otimes 1)+\alpha\otimes(\omega\alpha)^2+\alpha^2\otimes(\omega\alpha)$$- Check $\mu(\theta)=0$.
Apply the multiplication map $\mu(a\otimes b)=ab$:
$$
\mu(\theta)=2 + \alpha\cdot(\omega\alpha)^2 + \alpha^2\cdot(\omega\alpha)
=2 + \omega^2\alpha^3 + \omega\alpha^3.
$$
Since $\alpha^3=2$ and $\omega^2+\omega=-1$,
$$
\mu(\theta)=2 + 2(\omega^2+\omega)=2 + 2(-1)=0.
$$ - Check $\theta\neq0$.
Write $\theta$ in the $\mathbb Q$-basis$$
\mathcal B=\{\alpha^i\otimes(\omega\alpha)^j:\;i,j=0,1,2\}
$$Its coordinates are
$$
c_{00}=2,\qquad c_{12}=1,\qquad c_{21}=1,
$$
and all other $c_{ij}=0$. Because $\mathcal B$ is a $\mathbb Q$-basis of $L_1\otimes_{\mathbb Q}L_2$, the representation of an element in these basis vectors is unique. The coordinates are not all zero, hence $\theta\neq0$ in $L_1\otimes_{\mathbb Q}L_2$.
So $\theta$ is a nonzero element of $\ker\mu$; this explicitly shows $\mu$ is not injective and $L_1,L_2$ are not linearly disjoint over $F$. |
|