Forgot password?
 Register account
View 1743|Reply 2

[函数] 有理化因式

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2019-9-20 13:11 |Read mode
Last edited by hbghlyj 2023-9-8 15:22$f (x_1, x_2, \cdots, x_n)$为多项式函数, 求证:$f (\sqrt{x_1},
\sqrt{x_2}, \cdots, \sqrt{x_n})$的有理化为 $\sum_{|i_1| = |
i_2 | = \cdots = | i_n | = 1} f \left( i_1  \sqrt{x_1}, i_2  \sqrt{x_2}, \cdots, i_n  \sqrt{x_n} \right)$.
举例如下 求$1 + \sqrt{x} + \sqrt{y} + 2 \sqrt{xy}$的有理化因式
按照通常做法: 将$1 + \sqrt{y} + \sqrt{x}  \left( 1 + 2 \sqrt{y}
\right)$乘以$1 + \sqrt{y} - \sqrt{x}  \left( 1 + 2 \sqrt{y} \right)$得$1 -
x + y - 4 xy + 2 \sqrt{y}  (1 - 2 x)$ 乘以$1 - x + y - 4 xy - 2 \sqrt{y}  (1
- 2 x)$得$(1 - x + y - 4 xy)^2 - 4 y (1 - 2
x)^2$是有理式,所以有理化因式为$\left( 1 + \sqrt{y} - \sqrt{x}
\left( 1 + 2 \sqrt{y} \right) \right)  \left( 1 - x + y - 4 xy - 2 \sqrt{y}
(1 - 2 x) \right)$
但是按照上面结论可直接写出:有理化为$\left( 2
\sqrt{xy} + \sqrt{x} + \sqrt{y} + 1 \right)  \left( - 2 \sqrt{xy} - \sqrt{x} +
\sqrt{y} + 1 \right)  \left( - 2 \sqrt{xy} + \sqrt{x} - \sqrt{y} + 1 \right)
\left( 2 \sqrt{xy} - \sqrt{x} - \sqrt{y} + 1 \right)$
有理化因式为$\left( - 2 \sqrt{xy} - \sqrt{x} + \sqrt{y} + 1 \right)
\left( - 2 \sqrt{xy} + \sqrt{x} - \sqrt{y} + 1 \right)  \left( 2 \sqrt{xy} -
\sqrt{x} - \sqrt{y} + 1 \right)$

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2019-9-24 16:42
有点像Swinnerton-Dyer Polynomial.
参看:bbs.emath.ac.cn/forum.php?mod=viewthread& … &page=2#pid54091
以及《代數數與無理數的探討》
w3.math.sinica.edu.tw/math_media/d272/27204.pdf

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2023-2-9 20:12
forum.php?mod=viewthread&tid=5918
\begin{align*}
S&=\begin{vmatrix}
1 & a_1 & a_2 & a_3 \\
\sqrt{x_1}& a_0 & a_3 x_1 & a_2 \\
\sqrt{x_2}& a_3 x_2 & a_0 & a_1 \\
\sqrt{x_1x_2}& a_2 x_2 & a_1 x_1 & a_0 \\
\end{vmatrix}\\
\\
T&=\begin{vmatrix}
a_0 & a_1 & a_2 & a_3 \\
a_1 x_1 & a_0 & a_3 x_1 & a_2 \\
a_2 x_2 & a_3 x_2 & a_0 & a_1 \\
a_3 x_1x_2 & a_2 x_2 & a_1 x_1 & a_0 \\
\end{vmatrix}\\
\\
\\
\dfrac{S}{T}&=\dfrac{1}{a_{0}+a_{1}\sqrt{x_1}+a_{2}\sqrt{x_2}+a_{3}\sqrt{x_{1}x_{2}}}
\end{align*}

Mobile version|Discuz Math Forum

2025-5-31 11:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit