|
original poster
isee
posted 2021-9-19 20:52
Last edited by isee 2021-9-19 21:17此贴因 oreoes 的参与,搞大了,干脆再选一些同形异构的题来
题:正实数`x,y`满足`4\mathrm e^{4-2x}=(2x+y)\mathrm e^y`,则`x+\frac {2x^2}y+\frac yx`的最小值为_4__
\[f(x)=x\mathrm e^x,\]
\[4\mathrm e^{4-2x}=(2x+y)\mathrm e^y\iff f(4)=4\mathrm e^4=(2x+y)\mathrm e^{2x+y}=f(2x+y)\Rightarrow 4=2x+y,\]
\[x+\frac {2x^2}y+\frac yx=x+\frac {x(4-y)}y+\frac yx=\frac {4x}y+\frac yx\geqslant 4.\] |
|