Forgot password?
 Register account
View 818|Reply 13

[函数] 不等式$a \text{e}^{a^2-ax+1}-x+\frac 1a>0$恒成立等等 同形异构

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2021-9-18 00:12 |Read mode
Last edited by isee 2021-9-19 22:53当$x\in (0,4)$时,若不等式$a \text{e}^{a^2-ax+1}-x+\frac 1a>0$恒成立,求非零实数$a$的取值范围.

结果:$(0,2-\sqrt{3}]\cup [2+\sqrt{3},+\infty )$

0

Threads

6

Posts

238

Credits

Credits
238

Show all posts

oreoes Posted 2021-9-18 16:13
QQ截图20210918161202.png

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1 炉火纯青 构造

View Rating Log

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-9-18 16:43
Last edited by isee 2021-9-19 14:58回复 2# oreoes


这个方向亦可

\begin{align*}
a\mathrm e^{a^2-ax+1}&<x-\frac 1a\\
a\mathrm e^{a^2}&<\left(x-\frac 1a\right)\mathrm e^{ax-1}\\
a\mathrm e^a&<\left(x-\frac 1a\right)\mathrm e^{a(x-1/a)}&\text{构造}f(x)=a\mathrm e^{ax}
\end{align*}   

这种同形异构前阵子特别多

0

Threads

6

Posts

238

Credits

Credits
238

Show all posts

oreoes Posted 2021-9-18 17:20
回复 3# isee

\begin{align*}

a>\frac 14,a^2\mathrm e^{a^2-4a+1}&\ge 4a-1\\

a^2-4a+1&\ge\ln\left(\frac {4a-1}{a^2}\right)\\\
a^2-4a+1&\ge0 \Leftrightarrow 1\ge\frac {4a-1}{a^2}\Leftrightarrow0\ge\ln\left(\frac {4a-1}{a^2}\right)
\mbox{符合题意}\\
a^2-4a+1&<0 \Leftrightarrow 1<\frac {4a-1}{a^2}\Leftrightarrow0<\ln\left(\frac {4a-1}{a^2}\right)\mbox{与题矛盾}\\

\end{align*}

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1 代码上手即会

View Rating Log

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-9-18 17:52
Last edited by isee 2021-9-18 17:58回复 4# oreoes

说两个题外话
1) “\begin{align*...\end...”  这一类“环境”内,尽量不要空行(论坛里能正确处理,是 MathJax 兼容性强(或者说是优化),且最后一行\\不需要

(这个细节在 TeX Live 这样的软件内才会体现,当然如果压根不用 TeX Live之类的 LaTeX 排版软件,可以不理)

2) 公式中的文本,用\text{}更规范(其次论坛里 MathJax 直接支持公式中使用汉字,无需任何处理)

( LaTeX 代码与汉字混排的确比较麻烦,当然压根不用 TeX Live之类的软件,可以不理,其中最明显的特征就是放弃MS office 习惯)

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-9-18 17:55
话说,很久没有新人学 LaTeX 代码了,哈哈哈,像坛主已经放弃了(别人用代码了)~~

0

Threads

6

Posts

238

Credits

Credits
238

Show all posts

oreoes Posted 2021-9-18 20:33
回复 3# isee


    \begin{align*}

a\mathrm e^{a^2-ax+1}&>x-\frac 1a\\

a\mathrm e^{a^2}&>\left(x-\frac 1a\right)\mathrm e^{ax-1}\\

a^2\mathrm e^{a^2}&>\left(ax-1\right)\mathrm e^{ax-1}

\end{align*}
应该这样变形吧

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-9-19 14:59
回复 7# oreoes


你这个亦是, 形式上更佳

3#已经修改了

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-9-19 20:52
Last edited by isee 2021-9-19 21:17此贴因 oreoes 的参与,搞大了,干脆再选一些同形异构的题来

题:正实数`x,y`满足`4\mathrm e^{4-2x}=(2x+y)\mathrm e^y`,则`x+\frac {2x^2}y+\frac yx`的最小值为_4__

\[f(x)=x\mathrm e^x,\]
\[4\mathrm e^{4-2x}=(2x+y)\mathrm e^y\iff  f(4)=4\mathrm e^4=(2x+y)\mathrm e^{2x+y}=f(2x+y)\Rightarrow 4=2x+y,\]
\[x+\frac {2x^2}y+\frac yx=x+\frac {x(4-y)}y+\frac yx=\frac {4x}y+\frac yx\geqslant 4.\]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-9-19 21:20
Last edited by isee 2021-9-19 22:33若对任意`x>0`都有`a\left(\mathrm e^{ax}+1\right)\geqslant 2\left(x+\frac 1x\right)\ln x`,则实数`a`的最小值是___`\frac 2{\mathrm e}`___

哈哈无意又解决一个分参又失效了,,都在2019年, 含参不等式又升级了 有什么办法吗`\leftarrow` 这种标题恨啊~~~~~~~~~

哈哈哈,出现率好高~~又一道不等式含参的问题~~减号~ kuing 解了

\begin{align*}
a\left(\mathrm e^{ax}+1\right)&\geqslant 2\left(x+\frac 1x\right)\ln x\\
a\mathrm e^{ax}+a&\geqslant 2x\ln x+\frac 2x\ln x\\
ax\mathrm e^{ax}+ax&\geqslant 2x^2\ln x+2\ln x\\
ax\mathrm e^{ax}+ax&\geqslant x^2\ln x^2+\ln x^2\\
f(x)&=xe^x+x,\uparrow\\
f(ax)&\geqslant f(\ln x^2)\\
ax&\geqslant 2\ln x\\
\Rightarrow a&\geqslant \frac 2{\mathrm e}
\end{align*}

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-9-19 21:35
2020年新高考全国卷1第21题 含参导数恒成立 7#,可能就是这题引起的风潮


`ax+\ln x+1\leqslant xe^{2x}`——也算是

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-9-19 22:15
Last edited by isee 2021-9-20 00:11一道对数指数的含参不等式问题

函数导数恒成立,可能下是祖宗级别的~~~注意套娃里有原理(战巡) 2#

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-9-19 22:49
就这样吧,不等式分类下还没有“翻”

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2021-12-17 23:01
又一个同构典范(当然亦可以 $1/(x+2)$ 放缩过去)
\[x>0,\frac {\ln(x+1)}x>\frac { x}{\mathrm e^x-1},\Leftarrow f(x)=\frac{x-1}{\ln x}.\]

Mobile version|Discuz Math Forum

2025-5-31 10:37 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit