找回密码
 快速注册
搜索
查看: 124|回复: 3

[函数] $x⁵-6x+3∈ℚ[x]$ is not solvable by radicals.

[复制链接]

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2022-7-13 03:56 |阅读模式
Corollary 6.6. The polynomial $x^{5}-6 x+3 \in \mathbb{Q}[x]$ is not solvable by radicals. Proof. The polynomial $P(x):=x^{5}-6 x+3$ is irreducible by Eisenstein's criterion (for $p=3$ ). Furthermore, we compute $P(-1)=8>0$ and $P(1)=-2<0$. Also $\lim _{x \rightarrow \infty} P(x)=\infty$ and $\lim _{x \rightarrow-\infty}=-\infty$. Hence $P(x)$ has roots in $(-\infty,-1),(-1,1)$ and $(1, \infty)$ (by the intermediate value theorem). In particular, $P(x)$ has at least three roots in $\mathbb{R}$. Furthermore, we compute $$ \frac{\mathrm{d}}{\mathrm{d} x} P(x)=5 x^{4}-6$$and the real roots of $\frac{\mathrm{d}}{\mathrm{d} x} P(x)$ are $\pm \sqrt[4]{\frac{6}{5}}$. If $P(x)$ had more than three roots in $\mathbb{R}$, the polynomial $\frac{\mathrm{d}}{\mathrm{d} x} P(x)$ would have at least three roots in $\mathbb{R}$ by the mean value theorem, which is not possible. We conclude that $P(x)$ has precisely $3=5-2$ roots in $\mathbb{R}$. We can thus conclude from Proposition 6.5 that $\operatorname{Gal}(P) \simeq S_{5}$. Since $S_{5}$ is not solvable (see the end of subsubsection 5.3.1), we conclude from Theorem 5.18 that $P(x)$ is not solvable by radicals. $□$
本帖最后由 hbghlyj 于 2023-3-15 15:49 编辑

Lecture notes
Slides
Errata
Notes on transcendence theory

48

主题

992

回帖

1万

积分

积分
14981
QQ

显示全部楼层

Czhang271828 发表于 2022-7-22 17:26
Indeed, for each irreducible prime-degreed $f(x)\in \mathbb Q[x]$ with exactly $2$ complex roots in $\mathbb C$, the Galois group is $S_p$. This Corollary is pretty helpful.

Proof. Let $E$ denotes the splitting field of $f$ on $\mathbb Q$, $\{r_i\}_{i=1}^p$ be the set of (distinct) roots of $f$. Then $|\mathrm{Gal}(E/\mathbb Q)|=[E:\mathbb Q]$.

Since $[\mathbb Q(r_1):\mathbb Q]=p$, $p\mid |\mathrm{Gal}(E/\mathbb Q)|$. Via Sylow I thm., $\exists \sigma\in \mathrm{Gal}(E/\mathbb Q)$ with order $p$. When $\mathrm{Gal}(E/\mathbb Q)$ is regarded as a subgroup of $S_p$, $\sigma$ is a $p$ -
rotation, i.e., $p=(1j_2j_3\cdots j_p)$. One notices that $\{r_i\}_{i=1}^p$ contains exactly $2$ (conjugate) complex roots $r_1$ and $r_2$ (WLOG). Then $\tau:=(12)\in \mathrm{Gal}(E/\mathbb Q)\leq S_p$.

It is easy to check that $\tau$ and $\sigma$ generates $S_p$.

点评

I think “exactly $2$ roots in $\Bbb C\setminus\Bbb R$” is a better wording of “exactly $2$ complex roots”  发表于 2023-11-15 03:58
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-8-10 13:39

手机版|悠闲数学娱乐论坛(第3版)

GMT+8, 2025-3-4 11:56

Powered by Discuz!

× 快速回复 返回顶部 返回列表