Forgot password?
 Create new account
View 139|Reply 3

中值定理 疑问

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2022-10-15 07:36:39 |Read mode
Last edited by hbghlyj at 2022-10-15 11:03:00$f$在$[a,b]$连续可导, $b_0∈(a,b)$, 存在 $c_0∈(a,b_0)$ 使

$$f'(c_0)=\frac{f(b_0)-f(a)}{b_0-a}$$
则存在 $c∈(c_0,b)$ 使
$$f'(c)=\frac{f(b)-f(a)}{b-a}$$
这个命题是否正确呢?

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2022-10-15 17:53:19
为方便码字记 `k(m,n)=(f(m)-f(n))/(m-n)`。

存在 `c_1\in(b_0,b)` 使 `f'(c_1)=k(b_0,b)`,而 `k(a,b)` 必在 `k(a,b_0)` 与 `k(b_0,b)` 之间,即 `k(a,b)` 必在 `f'(c_0)` 与 `f'(c_1)` 之间,由达布定理知存在 `c\in(c_0,c_1)` 使 `f'(c)=k(a,b)`。

Rate

Number of participants 1威望 +1 Collapse Reason
hbghlyj + 1 精彩!

View Rating Log

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2022-10-15 18:02:26
我来补充细节:
`k(a,b)` 必在 `k(a,b_0)` 与 `k(b_0,b)` 之间
证明:
$$k(a,b)=\frac{f(a)-f(b)}{a-b}=\frac{f(a)-f(b_0)+f(b_0)-f(b)}{(a-b_0)+(b_0-b)}=\frac{(a-b_0)k(a,b_0)+(b_0-b)k(b_0,b)}{(a-b_0)+(b_0-b)}$$因为$a<b_0<b$, 所以 `k(a,b)` 必在 `k(a,b_0)` 与 `k(b_0,b)` 之间.

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2022-10-15 18:05:32
严格点来说应该先讨论 `k(a,b_0)=k(b_0,b)` 的情形(显然成立),不等的时候再说“之间”好点。

手机版Mobile version|Leisure Math Forum

2025-4-20 22:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list