Forgot password?
 Create new account
View 146|Reply 1

把上半平面共形映照到单位圆盘

[Copy link]

3147

Threads

8495

Posts

610K

Credits

Credits
66173
QQ

Show all posts

hbghlyj Posted at 2022-11-30 18:24:13 |Read mode
Last edited by hbghlyj at 2022-12-30 16:19:00求上半平面$\Bbb H$到单位圆盘的共形映照$f$.
$a,\bar a$关于实轴对称.
当$a\in\Bbb H$时,上半平面的点到$a$的距离小于到$\bar a$的距离.
所以,上半平面可以写成$\abs{z-a\over z-\bar a}<1$.
而,单位圆盘可以写成$\abs{z}<1$.
所以$f(z)=\abs{z-a\over z-\bar a}$满足要求(显然不唯一).

3147

Threads

8495

Posts

610K

Credits

Credits
66173
QQ

Show all posts

 Author| hbghlyj Posted at 2023-1-10 23:49:47
根据Matrix Representation of Complex Numbers把$x+yi$表示为2阶矩阵$\pmatrix{x&-y\\y&x}$
复数的Cayley transform是一个Möbius transform\begin{equation}\label1f(z)=\frac{z-i}{z+i}\end{equation}映射circline $\{∞, 1, –1 \}$到circline $\{1, –i, i \}$
\[f(x+yi)=\frac{x^2+y^2-1}{x^2+(1+y)^2}-\frac{2 i x}{x^2+(1+y)^2}\]
于是, 相应的2阶矩阵的映射$f$为\begin{equation}\label2f\left(\pmatrix{x&-y\\y&x}\right)=\pmatrix{\frac{x^2+y^2-1}{x^2+(1+y)^2}&\frac{2x}{x^2+(1+y)^2}\\
-\frac{2x}{x^2+(1+y)^2}&\frac{x^2+y^2-1}{x^2+(1+y)^2}
}\end{equation}
按照\eqref{1}写出形式上相同的2阶矩阵的映射$\tilde f$
\[\tilde f(A)=\frac{A-iI}{A+iI}\]
  1. A[x_,y_]:={{x,-y},{y,x}};
  2. (A[x,y]-A[0,1]).Inverse[A[x,y]+A[0,1]]//Together
Copy the Code

\begin{equation}\label3\tilde f\left(\pmatrix{x&-y\\y&x}\right)=\begin{pmatrix}
\frac{x^2+y^2-1}{x^2+y^2+2 y+1} & \frac{2 x}{x^2+y^2+2 y+1} \\
-\frac{2 x}{x^2+y^2+2 y+1} & \frac{x^2+y^2-1}{x^2+y^2+2 y+1}
\end{pmatrix}\end{equation}
可见\eqref{2}和\eqref{3}相同. 所以$f=\tilde f$.

手机版Mobile version|Leisure Math Forum

2025-4-21 01:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list