Forgot password?
 Create new account
View 2570|Reply 11

[函数] 一个抽象函数题求解

[Copy link]

45

Threads

51

Posts

484

Credits

Credits
484

Show all posts

等待hxh Posted at 2014-5-4 19:33:21 |Read mode
0504.jpg (谁还有此类抽象函数题不,想做几个练练手)

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-5-5 00:33:04
回复 1# 等待hxh

\[x[f(y)-f(x^2+y^2)]=y[f(x^2+y^2)-f(x)]\]
其中$x,y$都是正整数,两边要同号,说明$Min\{f(x),f(y)\}\le f(x^2+y^2) \le Max\{f(x),f(y)\}$

首先我们可以证明,$\abs{f(x)-f(y)}\ne 1$,否则由于$f(x^2+y^2)$也是正整数,有要有$Min\{f(x),f(y)\}\le f(x^2+y^2) \le Max\{f(x),f(y)\}$,只能是$f(x^2+y^2)=f(x)$或$f(x^2+y^2)=f(y)$,这将导致上面的等式一边为0一边不为0,肯定不对,因此不行

不妨假设$f(y)-f(x)=k>1$(反过来设$f(x)>f(y)$也行,反正一样,这里就只考虑其中一种了)
那么有$f(x)<f(x^2+y^2)\le f(y)-1<f(y)$,令$x^2+y^2=y_1$,又有$f(x)<f(x^2+y_1^2)\le f(y_1)-1< f(y)-1$,如此往复经过$k$步以后,最终得到$f(x)<f(x^2+y_k^2)<f(y)-k=f(x)$,这显然是不行的,因此也不可能

唯一只能是$f(x)=f(y)$对任意正整数$x,y$成立,但$f(x)=c$的这个常数却可以取任意正整数

45

Threads

51

Posts

484

Credits

Credits
484

Show all posts

 Author| 等待hxh Posted at 2014-5-5 11:48:23
又有f(x)<f(x^2+y1^2),这个得证明吧,为何f(x)>=f(x^2+y1^2)就一定不可能呢?

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-5-5 12:02:41
回复 1# 等待hxh
试试这道题:
blog图片博客.jpg
妙不可言,不明其妙,不着一字,各释其妙!

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-5-5 12:08:40
回复 3# 等待hxh

这个易证,后面那个不可能
前面有$f(x)<f(x^2+y^2)=f(y_1)$,$f(x)<f(x^2+y_1^2)<f(y_1)$

45

Threads

51

Posts

484

Credits

Credits
484

Show all posts

 Author| 等待hxh Posted at 2014-5-5 12:09:16
2012/4025?

45

Threads

51

Posts

484

Credits

Credits
484

Show all posts

 Author| 等待hxh Posted at 2014-5-5 12:28:31
回复 5# 战巡
哦,确实,刚没看出来!

45

Threads

51

Posts

484

Credits

Credits
484

Show all posts

 Author| 等待hxh Posted at 2014-5-5 16:19:25
回复 4# 其妙

此题很诡异,答案容易看出来,但严格证明却很难,我求出了f(k/m),(0<k,m<10)所有的值,试图用数归证明,但总差一处说明不了,求指点!

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-5-5 18:24:28
回复 8# 等待hxh
,我也不会,

45

Threads

51

Posts

484

Credits

Credits
484

Show all posts

 Author| 等待hxh Posted at 2014-5-6 18:40:45

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-5-6 21:20:15
回复 10# 等待hxh

45

Threads

51

Posts

484

Credits

Credits
484

Show all posts

 Author| 等待hxh Posted at 2014-5-6 23:07:32
证明稍微修改了下,欢迎交流blog.sina.com.cn/s/blog_c50749e40101hsbu.html

手机版Mobile version|Leisure Math Forum

2025-4-21 14:08 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list