|
kuing
Posted at 7 days ago
Last edited by kuing at 7 days ago看图就想起了这题:forum.php?mod=viewthread&tid=3447
作法很简单,取 AB 中点 O,弧 AB 中点 E,作矩形 OTFE,然后以 F 为圆心 FT 为半径作圆,两圆交点就是 C, D。
%20at%20(0,0);%0A%5Ccoordinate%20(A)%20at%20(-3,0);%0A%5Ccoordinate%20(B)%20at%20(3,0);%0A%5Ccoordinate%20(T)%20at%20(1.2,0);%0A%5Ccoordinate%20(E)%20at%20(0,3);%0A%5Ccoordinate%20(F)%20at%20(1.2,3);%0A%5Cdraw(A)--(B)(O)--(E)--(F)--(T);%0A%5Cforeach%20%5Ci%20in%20%7BO,A,B,T%7D%20%5Cfill%20(%5Ci)%20circle%20(2pt)%20node%5Bbelow%5D%20%7B%24%5Ci%24%7D;%0A%5Cforeach%20%5Ci%20in%20%7BE,F%7D%20%5Cfill%20(%5Ci)%20circle%20(2pt)%20node%5Babove%5D%20%7B%24%5Ci%24%7D;%0A%5Cdraw%5Bname%20path=1%5D%20(A)%20arc%20(180:0:3);%0A%5Cdraw%5Bname%20path=2%5D%20(F)%20circle%20(3);%0A%5Cpath%5Bname%20intersections=%7Bof=1%20and%202,%20by=%7BC,D%7D%7D%5D;%0A%5Cfill%20(C)%20circle%20(2pt)%20node%5Bleft%5D%20%7B%24C%24%7D;%0A%5Cfill%20(D)%20circle%20(2pt)%20node%5Bright%5D%20%7B%24D%24%7D;%0A%5Cend%7Btikzpicture%7D)
\[FT=r=\frac{a+b}2,~OT=\frac{\abs{a-b}}2\riff OF=\sqrt{FT^2+OT^2}=\sqrt{\frac{a^2+b^2}2},\]
所以
\[CD=2\sqrt{r^2-\frac{OF^2}4}=2\sqrt{\left(\frac{a+b}2\right)^2-\frac{a^2+b^2}8}=\sqrt{\frac{a^2+4ab+b^2}2}.\] |
|