Forgot password?
 Create new account
View 2515|Reply 9

[几何] 三角形内心I及射线,证角相等

[Copy link]

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2018-8-26 02:45:10 |Read mode
$ I $为$ \triangle ABC $的内心,$ CI $交$ AB $于$ D $,$ BI $交$ AC $于$ E $,射线$ DE $交$ \triangle ABC $的外接圆于$ M,N $。求证:$ \angle BMI=\angle CNI $
211.png

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2018-8-26 02:47:29
谁见过此题?

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2018-8-26 13:40:26
再来
$ I $为$ \triangle ABC $的内心,$ CI $分别交$ AB $及$ \triangle ABC $的外接圆于$ D,P $,$ BI $分别交$ AC $及$ \triangle ABC $的外接圆于$ E,Q $,射线$ DE $交$ \triangle ABC $的外接圆于$ M,N $,$ K $为$ AB $与$ PN $的交点,$ L $为$ BC $与$ MQ $的交点。求证:$ AK=AL $
212.png

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2018-9-11 00:10:22

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2021-8-31 03:28:39
顶,1楼和3楼就是一变式,可怎么证明?

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2021-9-5 20:21:39
Last edited by 乌贼 at 2021-9-5 22:26:00先记下 211.png
如图,$ \triangle ABC $中,$ AP $为$ \angle BAC $平分线,$ D $为$ AP $与$ BC $交点。$ DE $交$ CA $延长线于$ E $,$ DF $交$ BA $延长线于$ F $。若$ \angle DEC=\angle DCP,\angle BFD=\angle DBP $。则 $ BC\px EF $

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2021-9-5 23:03:13
Last edited by 乌贼 at 2021-9-14 00:44:00回复 6# 乌贼
如图: 212.png
$ DA $与$ \triangle BCP $外接圆交于$ Q $,$ M $为$ BQ $与$ DE $交点,$ N $为$ CQ $与$ DF $交点,有$ AQFN $四点共园,$ AQEM $四点共园,$ ADBM $四点共园,$ ADCN $四点共园。得\[ \angle QFA=\angle QNA=\angle ADC \]\[ \angle QEA=\angle QMA= \angle ADB\]即\[ \angle QFA+\angle QEA=\angle ADB+\angle ADC=180\du  \]也就是$ MEQFNA $六点共园,所以\[ \angle ACD=\angle AND=\angle AEF \]也就有\[ EF\px BC \]

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2021-9-6 00:14:27
回复 3# 乌贼
如图: 215.png
由7楼结论知\[ \dfrac{DF}{FE}=\dfrac{AD}{AE}=\dfrac{HD}{GE}\riff \dfrac{DF}{DH}=\dfrac{EF}{EG} \]
又$ BMLE $四点共园,得\[ \angle LBE=\angle LME=\angle QBN\riff \triangle ABL\sim \triangle NBC\riff AL\cdot BC=BL\cdot CN \]同理有\[ AK\cdot BC=CK\cdot BM \]只要\[ BL\cdot CN=CK\cdot BM \]成立则有\[ AL=AK \]我们有\[ \triangle DHF\sim \triangle CKN\riff \dfrac{CN}{CK}=\dfrac{DF}{DH} \]\[ \triangle EGF\sim \triangle BLM\riff\dfrac{EF}{EG}=\dfrac{BM}{BL} \]因此\[ \dfrac{CN}{CK}=\dfrac{DF}{DH}=\dfrac{EF}{EG}=\dfrac{BM}{BL} \]有$ BL\cdot CN=CK\cdot BM $成立故\[ AL=AK \]

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2021-9-6 00:43:32
回复 1# 乌贼
216.png
由\[ \angle PAQ=\angle ANP\riff AP^2=PQ\cdot PN\riff \angle PIQ=\angle PNI\riff CNI=\angle IQD \]同理有\[ \angle BMI=\angle ILE \]根据上楼$ AQ=AL $得\[ \angle DQI=\angle ELI \]就有\[ \angle BMI=\angle CNI \]

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2021-9-6 14:09:41
1楼证繁了,是得先证2楼。
谈一点感受,以往证明线段成比例手法,主要有三角形相似,平行线,圆割线等。但对于两个不相似三角形中的两边成比例证明无从下手,现在可借助6楼,利用三角形角平分线定理加之平行线予以解决。

手机版Mobile version|Leisure Math Forum

2025-4-21 22:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list