|
%20--%20(1.5,0)%20node%5Bright%5D%20%7B%24x%24%7D;%5Cdraw(1,.1)--(1,0)node%5Bbelow%5D%7B1%7D;%5Cdraw(-1,.1)--(-1,0)node%5Bbelow%5D%7B-1%7D;%0D%0A%20%20%20%20%5Cdraw%5B-%3E%5D%20(0,-.2)%20--%20(0,1.7)%20node%5Babove%5D%20%7B%24y%24%7D;%0D%0A%20%20%20%20%5Cdraw%5Bblue,thick%5Dplot%20%5Bdomain=-1:1%5D%20(%5Cx,%7B%5Cx*tan(%5Cx%20r)%7D)node%5Bright%5D%7B%24x%5Ctan%20x%24%7D;%0D%0A%5Cend%7Btikzpicture%7D)
我用同样的方法来解$x\tan x=ϵ\;(0<ϵ\ll1)$, 即$\tan x=\fracϵx$. 注意$k≠0$与$k=0$时leading order不同:
Putting $x∼x_0+ϵx_1+O(ϵ^2)$ into the equation, expanding $\tan x$ at $x_0$,$$\left(\tan x_0+(1+\tan^2 x_0)ϵx_1+O(ϵ^2)\right)\left(x_0+ϵx_1+O(ϵ^2)\right)=ϵ$$Equating the constant terms\[x_0\tan x_0=0⇒x_0=kπ,k∈\Bbb Z\]Putting into the equation, we get$$\left(ϵx_1+O(ϵ^2)\right)\left(kπ+ϵx_1+O(ϵ^2)\right)=ϵ$$For $k≠0$, equating the coefficients of $ϵ$\[x_1=\frac1{kπ}\]we obtain the asymptotic expansion$$x\sim kπ+\fracϵ{kπ}+O(ϵ^2)$$
For $k=0$, equating the coefficient of $ϵ^1$ we get $0=1$, contradiction😯
When $x\to0$, $\tan x=x+O(x^3)$, so $x(x+O(x^3))=ϵ$, we must have $x=O(ϵ^{1/2})$. Let$$x∼ϵ^{1/2}(x_0+ϵx_1+O(ϵ^2))$$Plugging into the equation, if expanding $\tan x$ at $x_0$,\[\left(\tan(ϵ^{1/2}x_0)+(1+\tan^2(ϵ^{1/2}x_0))ϵ^{3/2}x_1+O(ϵ^{5/2})\right)ϵ^{1/2}\left(x_0+ϵx_1+O(ϵ^2)\right)=ϵ\]which is cumbersome😵💫To get rid of $\tan$ let us expand at $0$ instead😀\[\left(ϵ^{1/2}x_0+ϵ^{3/2}x_1+O(ϵ^{5/2})+\frac13\left(ϵ^{1/2}x_0+O(ϵ^{3/2})\right)^3+O(ϵ^{5/2})\right)ϵ^{1/2}\left(x_0+ϵx_1+O(ϵ^2)\right)=ϵ\]
Equating the coefficient of $ϵ^1$ we get$$x_0^2=1⇒x_0=±1$$
Equating the coefficient of $ϵ^2$ we get$$2x_0x_1+\frac{x_0^4}3=0⇒x_1=-\frac16x_0$$
we obtain the asymptotic expansions $±ϵ^{1/2}(1-\fracϵ6+O(ϵ^2))$ |
|