Forgot password?
 Create new account
View 183|Reply 9

[函数] $x^2+\epsilon x-1=0$的渐近解

[Copy link]

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

hbghlyj Posted at 2023-2-27 17:48:40 |Read mode
Last edited by hbghlyj at 2023-5-30 15:13:00$\abs\epsilon< 1, x^2+\epsilon x-1=0$的渐近解为
$$x_+\sim1-\frac{1}{2} \epsilon + \frac{1}{8} \epsilon^{2}+O\left(\epsilon^{4}\right)$$

$$x_-\sim-1-\frac{1}{2} \epsilon - \frac{1}{8} \epsilon^{2}+O\left(\epsilon^{4}\right)$$

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-2-28 14:21:49
直截了当的方法是
\begin{align*}
x_\pm &=\dfrac{-\epsilon\pm \sqrt {\epsilon^2+4}}{2}\\
&=\pm \sqrt{1+\epsilon^2/4}-\epsilon/2 \\
&=\pm (1+\frac{\epsilon^2}{8}-\frac{\epsilon^4}{128}+\mathcal O(\epsilon ^6))-\dfrac\epsilon 2.
\end{align*}
但求根公式未必能解析地写出. 一般地, 就是给定在 $(x_0,f(x_0))$ 处可逆的光滑函数 $f$, 并且已知 $f^{-1}$ 的表达式, 试求 $f(x_0)$ 附近的 Taylor 展开. 用 $f$ 各阶导数表示 $f^{-1}$ 各阶导数的算法估计有很多, 此处不议.

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

 Author| hbghlyj Posted at 2023-2-28 19:36:20
Last edited by hbghlyj at 2023-5-2 22:02:00
Czhang271828 发表于 2023-2-28 07:21
用 $f$ 各阶导数表示 $f^{-1}$ 各阶导数的算法估计有很多, 此处不议.
In mathematical analysis, the Lagrange inversion theorem, also known as the Lagrange–Bürmann formula, gives the Taylor series expansion of the inverse function of an analytic function.

例子. 如何求Lambert W函数的级数?

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-3 03:59:23
Czhang271828 发表于 2023-2-28 07:21
一般地, 就是给定在 $(x_0,f(x_0))$ 处可逆的光滑函数 $f$, 并且已知 $f^{-1}$ 的表达式

我用同样的方法来解$x\tan x=ϵ\;(0<ϵ\ll1)$, 即$\tan x=\fracϵx$. 注意$k≠0$与$k=0$时leading order不同:
Putting $x∼x_0+ϵx_1+O(ϵ^2)$ into the equation, expanding $\tan x$ at $x_0$,$$\left(\tan x_0+(1+\tan^2 x_0)ϵx_1+O(ϵ^2)\right)\left(x_0+ϵx_1+O(ϵ^2)\right)=ϵ$$Equating the constant terms\[x_0\tan x_0=0⇒x_0=kπ,k∈\Bbb Z\]Putting into the equation, we get$$\left(ϵx_1+O(ϵ^2)\right)\left(kπ+ϵx_1+O(ϵ^2)\right)=ϵ$$For $k≠0$, equating the coefficients of $ϵ$\[x_1=\frac1{kπ}\]we obtain the asymptotic expansion$$x\sim kπ+\fracϵ{kπ}+O(ϵ^2)$$

For $k=0$, equating the coefficient of $ϵ^1$ we get $0=1$, contradiction😯
When $x\to0$, $\tan x=x+O(x^3)$, so $x(x+O(x^3))=ϵ$, we must have $x=O(ϵ^{1/2})$. Let$$x∼ϵ^{1/2}(x_0+ϵx_1+O(ϵ^2))$$Plugging into the equation, if expanding $\tan x$ at $x_0$,\[\left(\tan(ϵ^{1/2}x_0)+(1+\tan^2(ϵ^{1/2}x_0))ϵ^{3/2}x_1+O(ϵ^{5/2})\right)ϵ^{1/2}\left(x_0+ϵx_1+O(ϵ^2)\right)=ϵ\]which is cumbersome😵‍💫To get rid of $\tan$ let us expand at $0$ instead😀\[\left(ϵ^{1/2}x_0+ϵ^{3/2}x_1+O(ϵ^{5/2})+\frac13\left(ϵ^{1/2}x_0+O(ϵ^{3/2})\right)^3+O(ϵ^{5/2})\right)ϵ^{1/2}\left(x_0+ϵx_1+O(ϵ^2)\right)=ϵ\]
Equating the coefficient of $ϵ^1$ we get$$x_0^2=1⇒x_0=±1$$
Equating the coefficient of $ϵ^2$ we get$$2x_0x_1+\frac{x_0^4}3=0⇒x_1=-\frac16x_0$$
we obtain the asymptotic expansions $±ϵ^{1/2}(1-\fracϵ6+O(ϵ^2))$

Comment

$\tan(x)$在$x_0$的导数$\sec^2x_0$可以写成$1+\tan^2x_0$, 这个应该没错  Posted at 2023-5-3 04:05
$x_0=kπ$好像也没错🤔因为可以观察$\tan x$与$\fracϵx$的图像交点:当$x$大时$\frac{\epsilon}x≈0⇒\tan x=\fracϵx$的根近似于$\tan x=0$的根$kπ$. 到底哪错了呢  Posted at 2023-5-3 04:09
终于算对了. 现在和Mathematica的结果一样了  Posted at 2023-5-3 06:02

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-3 04:01:51

验证

  1. InverseSeries[Series[x Tan[x], {x, Pi, 1}]]
Copy the Code

\[\pi +\frac{x}{\pi }+O\left(x^2\right)\]
  1. InverseSeries[Series[x Tan[x], {x, 0, 4}]]
Copy the Code

\[\sqrt{x}-\frac{x^{3/2}}{6}+O\left(x^2\right)\]

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-3 06:18:57

级数和它的反演级数的最高阶有何规律?

以下是InverseSeries的输出:
级数反演级数
$x^2+O\left(x^3\right)$$\sqrt{x}+O\left(x^1\right)$
$x^2+\frac{x^4}{3}+O\left(x^5\right)$$\sqrt{x}-\frac{x^{3/2}}{6}+O\left(x^2\right)$
$x^2+\frac{x^4}{3}+\frac{2 x^6}{15}+O\left(x^7\right)$$\sqrt{x}-\frac{x^{3/2}}{6}+\frac{11 x^{5/2}}{360}+O\left(x^3\right)$
$x^2+\frac{x^4}{3}+\frac{2 x^6}{15}+\frac{17 x^8}{315}+O\left(x^9\right)$$\sqrt{x}-\frac{x^{3/2}}{6}+\frac{11 x^{5/2}}{360}-\frac{17 x^{7/2}}{5040}+O\left(x^4\right)$

级数的最高阶是$2,4,6,8$
反演级数的最高阶是$\frac12,\frac32,\frac52,\frac72$这能否直接看出来

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-3 06:22:49

反演级数2次 最高阶数减少

$$x^2+\frac{x^4}{3}+\frac{2 x^6}{15}+\frac{17 x^8}{315}+O\left(x^9\right)$$
的InverseSeries结果为$$\sqrt{x}-\frac{x^{3/2}}{6}+\frac{11 x^{5/2}}{360}-\frac{17 x^{7/2}}{5040}+O\left(x^4\right)$$再做一次InverseSeries结果为$$x^2+\frac{x^4}{3}+\frac{2 x^6}{15}+O\left(x^7\right)$$与原级数相比, 最高阶数减少了$1$, 最高阶项的数据丢失了!
再做一次InverseSeries结果为
\[\sqrt{x}-\frac{x^{3/2}}{6}+\frac{11 x^{5/2}}{360}+O\left(x^3\right)\]再做一次InverseSeries结果为
\[x^2+\frac{x^4}{3}+O\left(x^5\right)\]
最高阶数又减少了$1$!

手机版Mobile version|Leisure Math Forum

2025-4-21 01:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list