Forgot password?
 Create new account
View 133|Reply 2

含exp关于(u,v)的参数(x,y)的方程组 渐近解

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2023-5-8 17:48:05 |Read mode
Last edited by hbghlyj at 2023-5-30 15:12:00当$(u,v)≈(0,0),(x,y)≈(0,0)$, 求1阶渐近解
\begin{cases}\exp (3 u)+\exp (4 v)+\exp (x)+\exp (2 y)=4\\\exp (u)+\exp (v)+\exp (x)+\exp (y)=4\end{cases}Solution.
把$\exp(x)$替换为$1+x$
\begin{cases}1 + x + 1 + 2 y + 1 + 3 u + 1 + 4 v = 4 \\
1 + x + 1 + y + 1 + u + 1 + v = 4\end{cases}解得$\cases{u = -3 x - 2 y\\v =2 x + y}$

AsymptoticSolve验证:
  1. AsymptoticSolve[
  2. Exp[x]+Exp[2y]+Exp[3u]+Exp[4v]==4 &&
  3. Exp[x]+Exp[y]+Exp[u]+Exp[v]==4,
  4. {{u, v}, {0, 0}}, {{x, y}, {0, 0},1}]
Copy the Code
输出{{u -> -3 x - 2 y, v -> 2 x + y}}


等价于$\begin{cases}\exp (3 u)+\exp (4 v)=4-\exp (x)-\exp (2 y)\\\exp (u)+\exp (v)=4-\exp (x)-\exp (y)\end{cases}$
要解出$u,v$
用Gradient一阶近似$f(x)=y_{0}+D f\left(x_{0}\right)\left(x-x_{0}\right)+o\left(\left|x-x_{0}\right|\right)$, 假设余项为0, 则有
$$y=f(x) \quad \Longleftrightarrow \quad x=x_{0}+D f\left(x_{0}\right)^{-1}\left(y-y_{0}\right)$$
验证
  1. f={Exp[3u]+Exp[4v]+Exp[x]+Exp[2y],Exp[u]+Exp[v]+Exp[x]+Exp[y]};
  2. G=D[f,{{u,v}}]/.{u->0,v->0};
  3. Y={{2-Exp[x]-Exp[2y]},{2-Exp[x]-Exp[y]}};
  4. Normal@Series[Normal@Series[Inverse[G].Y,{x,0,1}],{y,0,1}]
Copy the Code

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-8 17:49:57

2阶渐近解

Last edited by hbghlyj at 2023-5-10 00:58:00用AsymptoticSolve得到的答案是$\begin{cases}u=-3 x-2 y&+45 x^2+54 x y+16 y^2\\v=2 x+y&-52 x^2-62 x y-19 y^2\end{cases}$
  1. AsymptoticSolve[
  2. Exp[x]+Exp[2y]+Exp[3u]+Exp[4v]==4 &&
  3. Exp[x]+Exp[y]+Exp[u]+Exp[v]==4,
  4. {{u, v}, {0, 0}}, {{x, y}, {0, 0},2}]
Copy the Code

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-10 07:59:03
$+45,+54,+16$
$-52,-62,-19$
这些是怎么筭出的

手机版Mobile version|Leisure Math Forum

2025-4-20 21:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list