Last edited by hbghlyj 2025-5-21 05:51$$\left(1+\frac{1}{z}+O(\frac{1}{z^5})\right)^{1+\frac{1}{z}}=1+\frac{1}{z}+\frac{1}{z^2}+\frac{1}{2 z^3}+\frac{1}{3 z^4}+O(\frac{1}{z^5})$$这是怎么得到的
来源: asymptotic Powers, Expontials and Logarithms例子
$\int_1^x (1+\frac{1}{t})^t \, dt = ex - \frac{e}{2}\log(x) + O(1)$
MSE$$(1+t^{-1})^t=\exp\left(t\ln\left(1+\frac1t\right)\right)=\exp\left(1-\frac{1}{2t}+O(t^{-2})\right)
=e\left(1-\frac1{2t}+O(t^{-2})\right).$$
Integrate this from $1$ to $x$.