Forgot password?
 Create new account
View 111|Reply 1

2个函数的渐近展开式相等, 但它们的差趋于1

[Copy link]

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2023-3-20 07:55:38 |Read mode
Last edited by hbghlyj at 2023-5-30 15:13:00奇怪的事:
  1. Asymptotic[Exp[-y]/(\[Epsilon] y)-Coth[\[Epsilon] y],{\[Epsilon],0,1}]
Copy the Code

$\frac{\exp (-y)}{y \epsilon }-\coth (y \epsilon )$展开为$\frac{e^{-y}}{y \epsilon }-\frac{1}{y \epsilon }$
  1. Asymptotic[Exp[-y]/(\[Epsilon] y)+Sin[\[Epsilon] y]/(\[Epsilon] y)-Coth[\[Epsilon] y],{\[Epsilon],0,1}]
Copy the Code

$\frac{\exp (-y)}{y \epsilon }+\frac{\sin (y \epsilon )}{y \epsilon }-\coth (y \epsilon )$展开也为$\frac{e^{-y}}{y \epsilon }-\frac{1}{y \epsilon }$
但是它们的差:
  1. Asymptotic[Sin[\[Epsilon] y]/(\[Epsilon] y),{\[Epsilon],0,1}]
Copy the Code

$\frac{\sin (y \epsilon )}{y \epsilon }$展开为1

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2023-3-20 07:57:36
求函数$$f(x,\epsilon) = \frac{e^{-x/\epsilon}}{x}+\frac{\sin (x)}{x}-\coth (x)$$的渐近展开, 直到$O(\epsilon)$, 其中$x>0$和$0<\epsilon \ll 1$.
Asymptotic inner expansion
On the other hand, the inner region is $x=O(\epsilon)$, but when I tried to compute the inner expansion via the rescaling $x=\epsilon y$ where $y=O(1)$ as $\epsilon \rightarrow 0$, I got
\begin{align*}
\ f(x,\epsilon) & =F(y,\epsilon) \\
\ & = \frac{e^{-y}}{\epsilon y} + \frac{\sin (\epsilon y)}{\epsilon y} - \coth (\epsilon y) \\
\ & = \Bigl (\frac{e^{-y}}{y}\epsilon ^{-1} \Bigr)+ \Bigl(1-\frac{(\epsilon y)^2}{3!}+\frac{(\epsilon y)^4}{5!}+\cdots \Bigr)- \Bigl((\epsilon y)-\frac{(\epsilon y)^3}{3}+\frac{2(\epsilon y)^3}{15}-\cdots \Bigr)^{-1} \\
\end{align*}
and we get a $(\frac{e^{-y}}{y}-\frac 1y) \epsilon ^{-1}$ term in the expansion even though we have assumed that $y = O(1)$.

用Mathematica计算:
级数展开到1阶:
  1. Series[Exp[-y]/(\[Epsilon] y)+Sin[\[Epsilon] y]/(\[Epsilon] y)-Coth[\[Epsilon] y],{\[Epsilon],0,1}]
Copy the Code
$$\frac{\frac{e^{-y}}{y}-\frac{1}{y}}{\epsilon }+1-\frac{y \epsilon }{3}+O\left(\epsilon ^2\right)$$
渐近展开到1阶:
  1. Asymptotic[Exp[-y]/(\[Epsilon] y)+Sin[\[Epsilon] y]/(\[Epsilon] y)-Coth[\[Epsilon] y],{\[Epsilon],0,1}]
Copy the Code
$$\frac{e^{-y}}{y \epsilon }-\frac{1}{y \epsilon }$$
渐近展开到2阶:
  1. Asymptotic[Exp[-y]/(\[Epsilon] y)+Sin[\[Epsilon] y]/(\[Epsilon] y)-Coth[\[Epsilon] y],{\[Epsilon],0,2}]
Copy the Code
$$1-\frac{1}{y \epsilon }+\frac{e^{-y}}{y \epsilon }-\frac{y \epsilon }{3}-\frac{y^2 \epsilon ^2}{6}$$

手机版Mobile version|Leisure Math Forum

2025-4-21 01:53 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list