Forgot password?
 Create new account
View 185|Reply 11

[函数] $ϵx^3-x+1=0$渐近解

[Copy link]

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2023-5-29 21:01:08 |Read mode
  1. AsymptoticSolve[ϵ x^3-x+1==0,{x},{ϵ,0,2}]
Copy the Code

\begin{array}{l}
1+\epsilon +3 \epsilon ^2 \\
-\frac{1}{\sqrt{\epsilon }}-\frac{1}{2}+\frac{3 \sqrt{\epsilon }}{8}-\frac{\epsilon }{2} \\
\frac{1}{\sqrt{\epsilon }}-\frac{1}{2}-\frac{3 \sqrt{\epsilon }}{8}-\frac{\epsilon }{2} \\
\end{array}按照MSE加了相同的标签

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-29 21:17:58
Last edited by hbghlyj at 2023-6-19 19:25:00Algebraic closure nlab
Theorem 3.2. If $K$ is algebraically closed and has characteristic $0$, then the algebraic closure of the field of (restricted) Laurent series $K((x))$ over $K$ is the field of Puiseux series over $K$.

Here “restricted” refers to Remark 2.4. See Puiseux series for more details on this result.

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-29 21:33:56
Last edited by hbghlyj at 2023-6-19 19:29:00math.stackexchange.com/questions/704309
I'm trying to find the expansion for the roots of this equation. I've found one root as $x\sim 1+\epsilon $. Now considering the dominant balance I want to rescale so that   
$\epsilon x^3\sim O(x) \Rightarrow x=O(1/\sqrt\epsilon )$  
Setting $x=y(1/\sqrt\epsilon )$ where $y=O(1)$ I get the new equation
$$y^3-y+\sqrt\epsilon=0$$
发帖者找到了一个根 $x\sim 1+\epsilon $. 现在考虑剩下的两个遥远的根.
$y\sim y_0+\epsilon y_1+\epsilon ^2 y_2+...$ 不起作用(因为洛朗级数不是代数闭的)
我们必须考虑分数指数(Puiseux series)
$y\sim y_0+\sqrt\epsilon y_1+\epsilon  y_2+...$

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-5-29 22:36:17
考虑 $\epsilon X^3=X-1$ 在 $X_0=1$ 附近的单根 $X_\epsilon$. 显然 $X_\epsilon-1\sim \epsilon$, 观察知
\[
X_\epsilon=\sum_{n\geq 0}\dfrac{\binom{3n}{n}}{2n+1}\cdot \epsilon^n.
\]

Comment

更感兴趣的是$O(\epsilon^{-1/2})$的 2 个根🤔  Posted at 2023-5-30 01:18
反函数级数在什么情况下是分数阶指数?  Posted at 2023-5-30 01:19
在 MSE 中,发布者@katie 尝试了整数指数级数,但失败了  Posted at 2023-5-30 01:20

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-29 22:51:18
$P(x)ϵ+Q(x)=0$
如果$P(x)$的次数高于$Q(x)$ 则$x$的渐近解 是分数次幂的?
如果$P(x)$的次数低于$Q(x)$ 则$x$的渐近解 是整数次幂的?

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2023-6-20 02:09:08

Algebraic Closure of Laurent Series

Puiseux series
It is the algebraic closure of the field of formal Laurent series, which itself is the field of fractions of the ring of formal power series.

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2023-6-20 02:10:55
Algebraic Closure of Laurent Series
Apr 21, 2006 · 7 posts · 1 author
Incidentally, these are called Puiseux series. Anyways, we're talking formal Laurent series, etc, right? It's easy to reduce the problem to ...


3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2023-6-20 02:22:50

convergence radius

Czhang271828 发表于 2023-5-29 15:36
\[
X_\epsilon=\sum_{n\geq 0}\dfrac{\binom{3n}{n}}{2n+1}\cdot \epsilon^n.
\]
sum_(n=0)^∞ (binomial(3 n, n) ϵ^n)/(2 n + 1) converges when $\abs ϵ\le\frac4{27}$

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2023-6-20 19:06:22
And from this I get 3 solutions if I'm not mistaken, one of them being the one you listed. Katie Mar 9, 2014 at 10:12

应该有 3 个根
Czhang271828 发表于 2023-5-29 15:36
考虑 $\epsilon X^3=X-1$ 在 $X_0=1$ 附近的单根 $X_\epsilon$. 显然 $X_\epsilon-1\sim \epsilon$, 观察知 ...
4#已经写出1附近的根的级数系数的一般表达式,但我们能否写出其余2个遥远的根的级数系数的一般表达式
WolframAlpha $\epsilon=0.0001$:
$x_1 = -100.496$
$x_2 = 1.0001$
$x_3 = 99.4962$

手机版Mobile version|Leisure Math Forum

2025-4-21 01:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list