Forgot password?
 Register account
View 418|Reply 3

[函数] 关于$y$的三次方程的渐近解

[Copy link]

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2023-3-9 02:05 |Read mode
Last edited by hbghlyj 2023-8-8 14:10$x>0$时, 关于$y$的方程$$y^3+e^x y+x \log (x)=0$$有唯一实根$y_0$.
证明:存在常数$C$使$$-1<{y_0\over e^{-x} x \log (x)}\le C$$对任意$x>1$成立.
注:这里$e^{-x} x \log (x)$是AsymptoticSolve[y^3 + Exp[x] y + x Log[x] == 0, y, x->∞]算出的。

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

 Author| hbghlyj Posted 2023-8-8 13:41
$y_0=\frac{\sqrt[3]{\sqrt{3} \sqrt{27 x^2 \log ^2(x)+4 e^{3 x}}-9 x \log (x)}}{\sqrt[3]{2} 3^{2/3}}-\frac{\sqrt[3]{\frac{2}{3}} e^x}{\sqrt[3]{\sqrt{3} \sqrt{27 x^2 \log ^2(x)+4 e^{3 x}}-9 x \log (x)}}$ .png

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

 Author| hbghlyj Posted 2023-8-8 13:50
如果在方程左边添加一项$e^{-x} x y^2 \log (x)$变成
$$y^3+e^x y+x \log (x)+e^{-x} x y^2 \log (x)=0$$
就可以因式分解
$$\left(y+i e^{x/2}\right) \left(y-i e^{x/2}\right) \left(y+e^{-x} x \log (x)\right)=0$$
得到$y=-e^{-x} x \log (x)$
当$x\to\infty$时$e^{-x} x y^2 \log (x)\to0$所以添加这一项应该不会改变很多?

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

 Author| hbghlyj Posted 2023-8-8 13:57
Last edited by hbghlyj 2023-8-8 14:10
  1. Plot[(-(((2/3)^(1/3) E^
  2.     x)/(-9 x Log[x] + Sqrt[3] Sqrt[4 E^(3 x) + 27 x^2 Log[x]^2])^(
  3.    1/3)) + (-9 x Log[x] + Sqrt[3] Sqrt[4 E^(3 x) + 27 x^2 Log[x]^2])^(
  4.   1/3)/(2^(1/3) 3^(2/3)))/(E^-x x Log[x]), {x, 1, 10}]
Copy the Code
$\dfrac{y_0}{e^{-x} x \log (x)}$在$x\in(1,10)$的图象 .png

可见$-1< {y_0\over e^{-x} x \log (x)}\le C\approx-0.995$
而且当$x\to\infty$时趋于$-1$.
如何证明呢

Mobile version|Discuz Math Forum

2025-6-5 18:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit