|
Author |
hbghlyj
Posted at 2023-3-29 01:58:28
1)
若$n=pq,(p,q)=1$,则$p,q\in\{1,⋯,n-1\}$,所以$pq|(n-1)!$,即$n|(n-1)!$;
若$n=p^2,p>2$,则$p,2p\in\{1,⋯,n-1\}$,所以$p^2|(n-1)!$,即$n|(n-1)!$
2)
设$p=2m+1$.由$$
1 \cdot 2 \cdots(p-1) \equiv-1 \pmod p
$$
得
$$
1 \cdot(p-1) \cdot 2 \cdot(p-2) \cdots m \cdot(p-m) \equiv 1 \cdot(-1) \cdot 2 \cdot(-2) \cdots m \cdot(-m) \equiv-1 \pmod p
$$
即
$$
\prod_{j=1}^{m} j^2 \equiv(-1)^{m+1} \pmod p
$$
也即
$$
(m !)^{2} \equiv(-1)^{m+1} \pmod p
$$当$p=4k+1$时,$m$为偶数,所以$(m!)^2\equiv-1\pmod p$
3)
$n=2,3,5$是$(n-1)!+1=n^k$的解,但$n=1$和$n=4$不是.
设$n>5$使$(n-1)!+1$是$n$的幂.若$n$为合数,由1)知$n|(n-1)!$,所以$(n-1)!+1$不为$n$的幂,故$n$为质数.
设$p>5$为质数,存在$k\in\Bbb{Z}$使$(p-1)!+1=p^k$.则$$(p-1)!=p^k-1=(p-1)\cdot\sum_{i=0}^{k-1}p^i,$$故$(p-2)!=\sum_{i=0}^{k-1}p^i$.我们有$$(p-2)!\equiv\sum_{i=0}^{k-1}p^i\equiv k\pmod{p-1},$$因为$p-1>4$是合数,我们有$k\equiv(p-2)!\equiv0\pmod{p-1}$.由不等式$$p^k-1=(p-1)!<(p-1)^{p-1}<p^{p-1},$$知$k<p-1$,显然$k>0$,矛盾.
故$(n-1)!+1=n^k$的解为$n=2,3,5$. |
|