Forgot password?
 Register account
View 253|Reply 2

[数论] $2\bmod p$二次剩余$⇔p≡±1\pmod8$

[Copy link]

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

hbghlyj Posted 2023-5-5 06:04 |Read mode
$p$为奇素数.
$$2^{\frac{p-1}{2}}\equiv1 \pmod p\iff p\equiv\pm1\pmod8$$

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2023-5-5 06:05

单位根

MSE
$$\sqrt{2}e^{2i \pi /8}= 1+i$$
$$(\sqrt{2}e^{2i \pi /8})^p = \sqrt{2} \color{red}{2^{p-1\over2}}e^{2i \pi /8} (e^{2i \pi /8})^{p-1}=(1+i)i^{p-1\over2}\color{red}{2^{p-1\over2}}$$
$$(1+i)^p \equiv 1^p+i^p \equiv 1+i (-1)^{(p-1)/2}\equiv (1+i) i^{(p-1)/2} (-1)^{(p^2-1)/8} \bmod p $$
$$\implies\color{red}{2^{p-1\over2}} \equiv (-1)^{(p^2-1)/8}  \bmod p$$

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2023-5-5 06:30
\[1+i (-1)^{(p-1)/2}\equiv (1+i) i^{(p-1)/2} (-1)^{(p^2-1)/8}\]
这步是怎么得到的?
那个 $\equiv$ 其实是 $=$ 对于奇数 $p$ 都成立.
我不会化简但是可以对$p\equiv1,3,5,7\pmod8$分别验证

Mobile version|Discuz Math Forum

2025-6-5 08:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit