Forgot password?
 Create new account
View 244|Reply 6

[数论] $a^3 - 3a + 1$在$ℤ_p$的根唯一,则$p=3$

[Copy link]

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2023-4-22 19:34:13 |Read mode
Last edited by hbghlyj at 2023-4-22 21:43:00找到所有质数 $p$,使得存在唯一的 $a \in \mathbb{Z}_p$ 满足 $a^3 - 3a + 1 = 0.$

IMC 2020 Problem 6

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

 Author| hbghlyj Posted at 2023-4-22 19:36:54
Last edited by hbghlyj at 2023-4-22 21:43:00AOPS @soroush.MG的证明
答案是 $p=3 , a=2$.
对于 $p=3,p=2$ 很容易检查。
令 $p>3$ 并假设存在 $a \in \{1,2,...,p\}$ 使得 $p|a^3-3a+1$
我们声称存在 $b \in \{1,2,...,p\}$ 使得 $b\ne a,p|b^3-3b+1 $。
\begin{align*} p|b^3-3b+1&\implies p|b^3-3b+1-(a^3-3a+1)=(b-a)(a^2+ba+b^2-3)\\ &\implies p|a^2+ab+b^2-3\\ &\implies a^2+ab+b^2 \equiv 3\pmod p \end{align*}
Claim:对固定的 $a$, 存在 $b$ 使$(2a+b)^2 \equiv -3b^2+12\pmod p$.
Proof:两边模 $p$ 产生 $\frac {p+1}{2}$ 不同的数。 $$\frac {p+1}{2} + \frac {p+1}{2} = p+1 > p$$根据鸽巢原理,至少有 1 个 $b$ 满足等式 $_\blacksquare$
存在 $b \in \{1,2,...,p\}$ 使:$(2a+b)^2 \equiv -3b^2+12\pmod p$ $$\Rightarrow 4a^2 + 4ab+ 4b^2 \equiv 12 \pmod p$$ 而 $p>3 \Rightarrow (p,4) = 1$, 我们得到 $a^2+ab+b^2 \equiv 3\pmod p$
还剩证明 $b \ne a$.
假设 $a = b$, 则 $p|3a^2-3 \Rightarrow p|a^2-1=(a-1)(a+1)\Rightarrow a=1,p-1.$
而且很容易检查这两种情况都是不可能的,现在证明已经完成。

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

 Author| hbghlyj Posted at 2023-4-23 04:44:09
artofproblemsolving.com/community/c7h2210278p16724751
Solution using algebraic number theory.
Let $ f=x^3-3x+1 \in \mathbb{Q}[x]$, it is irreducible. We work in $K=\mathbb{Q}(\alpha)$, where $\alpha$ is a complex root of $f$. The discriminant $\Delta_f$ of $f$ is $3^4$, a square, so that the Galois group of $f$ is $A_3$ and $K/\mathbb{Q}$ is Galois. Let $\mathcal{O}_K$ be the ring of integers of $K$, by standard algebraic number theory every prime factor of $p\mathcal{O}_K$ will have the same ramification index and residue field/norm. By Dedekind's lemma, for $p$ not dividing $[\mathcal{O}_K:\mathbb{Z}[\alpha]] \mid \Delta_f=3^4$, the factorization of $p\mathcal{O}_K$ is given by the factorization of $\overline{f}$ in $\mathbb{F}_p[x]$, which means that $f$ will have exactly one root in $\mathbb{F}_p$ iff $p$ completely ramifies, in which case $p$ divides the discriminant of $\mathcal{O}_K$, which means that $p=3$. For $p=3$ the property is indeed satisfied.

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

 Author| hbghlyj Posted at 2023-6-23 15:51:31
hbghlyj 发表于 2023-4-22 12:36
根据鸽巢原理,至少有 1 个 $b$ 满足等式
我不明白这一步?

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2024-7-4 18:10:05
关联帖子.

用关键词 $x^3-3x+1=0$ 搜出了这帖. 给个目测法:

若存在根 $a_0$, 则 $a_0\neq 1$, 此时 $(1-a_0)^{-1}$ 也是根. 唯一性表明 $a_0=(1-a_0)^{-1}$, 即 $a_0^2-a_0+1=0=a_0^3-1$. 与题设 $a_0^3-3a_0+1=0$ 比较知 $3a_0=0$. 因此 $p=3$.

然后, 这帖中的零点对应 $x_{k+1}=f(x_k)$ ($\deg f=2$) 是必然的, 因为 $x^3=px+q$ Galois 群为 $\mathbb Z_3$ 的充要条件是 $\sqrt{4p^3+27q^2}\in \mathbb Q$ 且方程无有理根.

可以通过构造 norm element 列举 $G$-不变有理多项式 $g$. 仍然考虑例如 $\mathrm{PSL}_2(\mathbb Z)$, 则 $\tau:x\mapsto 1-x$ 与 $\sigma:x\mapsto \frac{1}{x}$ 生成群 $S_3$, 考虑作用
$$
S_3\{x\}=\left\{\frac x1,\frac{1-x}1,\frac{x-1}{x},\frac 1x,\frac 1{1-x},\frac{x}{x-1}\right\}=\{x_i\}_{i=1}^6
$$
关于 $\{x_i\}$ 的对称多项式都是在 $\tau$ 与 $\sigma$ 下不变的有理函数. 例如有著名的例子:
$$
\varphi(x)=\frac{(x^2-x+1)^3}{x^2(x-1)^2},\quad \varphi(x)=\varphi(1-x)=\varphi(1/x).
$$

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2024-7-13 15:58:50
方程$x^3-3x+1=0$的实数根是多少?

Comment

是 $x_1=-2\cos20^\circ,\,x_2=2\cos80^\circ,\,x_3=2\cos40^\circ$. 摘至帖子: https://kuing.cjhb.site/forum.php?mod=viewthread&tid=12432  Posted at 2024-7-13 16:02
妙不可言,不明其妙,不着一字,各释其妙!

手机版Mobile version|Leisure Math Forum

2025-4-21 01:29 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list