Forgot password?
 Register account
View 2030|Reply 3

[几何] 一道关于三角形垂心位置的证明

[Copy link]

414

Threads

906

Posts

110K

Credits

Credits
11006

Show all posts

lemondian Posted 2024-11-23 20:35 |Read mode
Last edited by hbghlyj 2025-5-24 09:11设为$\triangle ABC$锐角三角形,其垂心为$H$,令$M$为线段$BC$上的一点,通过$M$且垂直于$BC$的直线分别与$BH$和$CH$相交于点$P$和$Q$。证明:$\triangle HPQ$的垂心位于直线$AM$上。

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2024-11-24 23:37
Last edited by hbghlyj 2025-5-24 09:21

如图,令$\Delta PHQ$垂心$H'$,其他看图

既然$H$为垂心,那么$BP\perp AC$,显然会有$\angle P=\angle ACB$,同理$\angle PQH=\angle ABC, \angle PHQ=\angle BAC$,即
\[\Delta ABC\sim\Delta PHQ\]
那么对应的高自然也是相似的,会有
\[\frac{AH}{AD}=\frac{HH'}{HD'}\]
又显然$HD'\parallel BC$,即有矩形$HDMQ$,而后
\[\frac{AH}{AD}=\frac{HH'}{DM}\]
那这样的$H'$点显然只能在$AM$上

Comment

NB。
好象钝角三形成立?  Posted 2024-11-25 22:53

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

hbghlyj Posted 2025-5-21 08:56

Mobile version|Discuz Math Forum

2025-6-5 08:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit