Forgot password
 Register account
View 1626|Reply 7

来自人教群的一道复数题$z^3+z+1=0$

[Copy link]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-10-16 17:37 |Read mode
Last edited by hbghlyj 2025-7-11 19:42
若复数 $z$ 的虚部不为零,且 $z^3+z+1=0$,则( )
  • $|z|<1$
  • $|z|=1$
  • $1<|z|<\sqrt{2}$
  • $|z| \geq \sqrt{2}$
简单的方法,群里 爱好者-Nash(2770*****) 已经找到了相关链接:
bbs.pep.com.cn/forum.php?mod=viewthread&tid=2336840

这里我就复数的三角形式再给一个笨方法:
依题意可设 $z=r(\cos t+i\sin t)$,其中 $r>0$, $t\in\Bbb R$ 且 $\sin t\ne 0$,则
\begin{align*}
z^3+z+1=0\iff{}&r^3(\cos 3t+i\sin 3t)+r(\cos t+i\sin t)+1=0, \\
\iff{}&\left\{ \begin{aligned}
&r^3\cos 3t+r\cos t+1=0, \\
&r^3\sin 3t+r\sin t=0,
\end{aligned} \right. \\
\iff{}&\left\{ \begin{aligned}
&r^3(4\cos ^3t-3\cos t)+r\cos t+1=0, \\
&r^3(3\sin t-4\sin ^3t)+r\sin t=0,
\end{aligned} \right. \\
\iff{}&\left\{ \begin{aligned}
&r\cos t\bigl(r^2(4\cos ^2t-3)+1\bigr)+1=0, \\
&r^2(3-4\sin ^2t)+1=0,
\end{aligned} \right. \\
\riff{}&\left\{ \begin{aligned}
&r^2\cos ^2t\bigl(r^2(4\cos ^2t-3)+1\bigr)^2-1=0, \\
&r^2(4\cos ^2t-1)+1=0,
\end{aligned} \right. \\
\iff{}&\left\{ \begin{aligned}
&4(r\cos t)^2\bigl(4(r\cos t)^2-3r^2+1\bigr)^2-4=0, \\
&4(r\cos t)^2-r^2+1=0,
\end{aligned} \right. \\
\riff{}&(r^2-1)(r^2-1-3r^2+1)^2-4=0, \\
\iff{}&r^6-r^4-1=0,
\end{align*}
由此易证 $1<r^2<2$,即 $1<\abs z<\sqrt2$。

上述解法不需要知道虚根成对且共轭,但需要知道棣莫佛(De Moivre)定理和三倍角公式。

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-10-16 18:56
Last edited by hbghlyj 2025-7-11 19:40那儿pep的图片太小,链接过来:
设 $z=a+b i, a, b \inR$,且 $b \neq 0$,则 $a^3+3 a^2 b i-3 a b^2-b^3 i+a+b i+1=0 \Rightarrow a^3-3 a b^2+a+1=3 a^2 b-b^3+b=0$
因 $b \neq 0$,故 $3 a^2-b^2+1=0 \Rightarrow b^2=3 a^2+1$,所以,$a^3-3 a\left(3 a^2+1\right)+a+1=0 \Rightarrow 8 a^3+2 a-1=0 \cdots \cdots$(*)
因为 $|z|^2=a^2+b^2=4 a^2+1$,故只需求 $t=2 a$ 的取值范围,由(*)知,$f(t)=t^3+t-1=0$,易知 $f(x)$ 单调递增
且 $f(0)=-1<0, f(1)=1>0$,故方程 $f(t)=0$ 有且只有一根 $t \in(0,1) \Rightarrow|z|^2=4 a^2+1=t^2+1 \in(1,2) \Rightarrow 1 <|z|<\sqrt{2}$

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2013-10-16 19:08
嗯,这个需要知道的东西更少

461

Threads

958

Posts

4

Reputation

Show all posts

青青子衿 posted 2025-7-11 16:43
Last edited by hbghlyj 2025-7-11 23:15
kuing 发表于 2013-10-16 19:08
嗯,这个需要知道的东西更少
有群友给出了似乎是更简单的做法
\begin{aligned} & z=r(\cos \theta+\mathrm{i} \sin \theta), \sin \theta \neq 0, r>0 \\ & \Rightarrow r^2=\frac{1}{4 \sin ^2 \theta-3} \in(1,+\infty), r>1 \\ & \Rightarrow|z|^2=\left|1+\frac{1}{z}\right| \leqslant 1+\frac{1}{|z|}<2 \Rightarrow|z|<\sqrt{2}\end{aligned}

Comment

看头像和排版风格,是论坛上的 @007  posted 2025-7-11 16:45
他就是“新高考数学解题之路研讨群”(qq群号码为60519007)的张琦老师,也是人教论坛的老会员了  posted 2025-7-13 00:00
都是些要付费的群  posted 2025-7-13 03:21

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2025-7-11 18:56
这个看起来很像是从复变函数里面弄出来的,后面那块其实儒歇定理直接秒
当$|z|=\sqrt{2}$时
\[|z+1|\le\sqrt{2}+1<|z^3|=2\sqrt{2}\]
因此
\[z^3+z+1=0\]
在$|z|\le \sqrt{2}$上的零点个数与$z^3=0$一样,也就是3个



另一种方法可能更简单

首先我们知道,$f(z)=z^3+z+1=0$肯定有一个实数根,两个复数根,而且这俩复数根共轭,令实数根为$x_1$,两个复数根为$z_2,z_3$,那么$|z_2|=|z_3|=\sqrt{z_2z_3}$
鉴于$f(-\frac{1}{2})=\frac{3}{8}>0,f(-1)=-1<0$,说明$-1<x_1<-\frac{1}{2}$,又
\[x_1z_2z_3=-1\]
说明
\[1<z_2z_3<2\]
\[1<|z_2|=|z_3|=\sqrt{z_2z_3}<\sqrt{2}\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 13:47 GMT+8

Powered by Discuz!

Processed in 0.016269 seconds, 41 queries