Forgot password?
 Create new account
View 1427|Reply 2

来自人教群的一道复数题$z^3+z+1=0$

[Copy link]

700

Threads

110K

Posts

910K

Credits

Credits
94192
QQ

Show all posts

kuing Posted at 2013-10-16 17:37:51 |Read mode
QQ截图20131016164614.gif

简单的方法,群里 爱好者-Nash(2770*****) 已经找到了相关链接:
bbs.pep.com.cn/forum.php?mod=viewthread&tid=2336840

这里我就复数的三角形式再给一个笨方法:
依题意可设 $z=r(\cos t+i\sin t)$,其中 $r>0$, $t\in\mbb R$ 且 $\sin t\ne 0$,则
\begin{align*}
z^3+z+1=0\iff{}&r^3(\cos 3t+i\sin 3t)+r(\cos t+i\sin t)+1=0, \\
\iff{}&\left\{ \begin{aligned}
&r^3\cos 3t+r\cos t+1=0, \\
&r^3\sin 3t+r\sin t=0,
\end{aligned} \right. \\
\iff{}&\left\{ \begin{aligned}
&r^3(4\cos ^3t-3\cos t)+r\cos t+1=0, \\
&r^3(3\sin t-4\sin ^3t)+r\sin t=0,
\end{aligned} \right. \\
\iff{}&\left\{ \begin{aligned}
&r\cos t\bigl(r^2(4\cos ^2t-3)+1\bigr)+1=0, \\
&r^2(3-4\sin ^2t)+1=0,
\end{aligned} \right. \\
\riff{}&\left\{ \begin{aligned}
&r^2\cos ^2t\bigl(r^2(4\cos ^2t-3)+1\bigr)^2-1=0, \\
&r^2(4\cos ^2t-1)+1=0,
\end{aligned} \right. \\
\iff{}&\left\{ \begin{aligned}
&4(r\cos t)^2\bigl(4(r\cos t)^2-3r^2+1\bigr)^2-4=0, \\
&4(r\cos t)^2-r^2+1=0,
\end{aligned} \right. \\
\riff{}&(r^2-1)(r^2-1-3r^2+1)^2-4=0, \\
\iff{}&r^6-r^4-1=0,
\end{align*}
由此易证 $1<r^2<2$,即 $1<\abs z<\sqrt2$。

上述解法不需要知道虚根成对且共轭,但需要知道棣莫佛(De Moivre)定理和三倍角公式。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-16 18:56:18
那儿pep的图片太小,链接过来:
20120218_f0c68b115a9038e44affAlUxweuLohxB.jpg
妙不可言,不明其妙,不着一字,各释其妙!

700

Threads

110K

Posts

910K

Credits

Credits
94192
QQ

Show all posts

 Author| kuing Posted at 2013-10-16 19:08:22
嗯,这个需要知道的东西更少

手机版Mobile version|Leisure Math Forum

2025-4-21 22:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list