Forgot password
 Register account
View 314|Reply 2

[几何] 三次方程虚根的几何解释

[Copy link]

3218

Threads

7837

Posts

52

Reputation

Show all posts

hbghlyj posted 2023-1-26 21:01 |Read mode
Geometric interpretation of imaginary roots of cubic equation
Wikipedia
三次函数的两个虚根为 $g ± hi(g,h\in\Bbb R,h>0)$. R 为三次函数图象与 x 轴的唯一交点.
过 R 作三次函数图象的切线, 切点为 H. RA 的斜率是 RH 的两倍.
则 g = M的横坐标 (图中是负的) 且 $h = \sqrt{\tan ORH} = \sqrt{RH的斜率} = BE = DA$.
1000px-Graphical_interpretation_of_the_complex_roots_of_cubic_equation.svg.png

3218

Threads

7837

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-4-12 22:47
hbghlyj 发表于 2023-1-26 13:01
g = M的横坐标 (图中是负的)
这可以用forum.php?mod=viewthread&tid=12249 来证明:因为三次函数和任意直线的三个交点的横坐标之和都相等,所以三次函数和x轴的三个交点的横坐标之和等于三次函数和直线RH的三个交点的横坐标之和。

3218

Threads

7837

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-4-12 22:52
hbghlyj 发表于 2023-1-26 13:01
且 $h = \sqrt{\tan ORH} = \sqrt{RH的斜率} = BE = DA$.
怎么证明呢?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 11:51 GMT+8

Powered by Discuz!

Processed in 0.016187 seconds, 39 queries