Forgot password?
 Create new account
View 188|Reply 2

[几何] 三次方程虚根的几何解释

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-1-26 21:01:43 |Read mode
Geometric interpretation of imaginary roots of cubic equation
Wikipedia
三次函数的两个虚根为 $g ± hi(g,h\in\Bbb R,h>0)$. R 为三次函数图象与 x 轴的唯一交点.
过 R 作三次函数图象的切线, 切点为 H. RA 的斜率是 RH 的两倍.
则 g = M的横坐标 (图中是负的) 且 $h = \sqrt{\tan ORH} = \sqrt{RH的斜率} = BE = DA$.
1000px-Graphical_interpretation_of_the_complex_roots_of_cubic_equation.svg.png

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2024-4-12 22:47:46
hbghlyj 发表于 2023-1-26 13:01
g = M的横坐标 (图中是负的)
这可以用kuing.cjhb.site/forum.php?mod=viewthread&tid=12249 来证明:因为三次函数和任意直线的三个交点的横坐标之和都相等,所以三次函数和x轴的三个交点的横坐标之和等于三次函数和直线RH的三个交点的横坐标之和。

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2024-4-12 22:52:14
hbghlyj 发表于 2023-1-26 13:01
且 $h = \sqrt{\tan ORH} = \sqrt{RH的斜率} = BE = DA$.
怎么证明呢?

手机版Mobile version|Leisure Math Forum

2025-4-21 14:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list