Forgot password
 Register account
View 159|Reply 1

[几何] 三次函数上任意三点的重心的集合

[Copy link]

3219

Threads

7837

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-4-12 23:31 |Read mode
$y=x^3$上任意三点的重心的集合是整个平面吗?

3219

Threads

7837

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-4-12 23:38

是全平面

设$Y=X^3$上的点$A,B,C$的重心为$G$,
$$\exists A,B,C:\quad G=\frac{A+B+C}3$$
$$\iff\exists A:\quad\exists B,C:\quad\frac{3G}2-\frac{A}2=\frac{B+C}2$$
$$\iff\exists A:\qquad\frac{3G}2-\frac{A}2\in\left\{\frac{B+C}2:B,C\right\}$$
而$Y=X^3$上任意两点的中点的集合是$\{(X,Y):X(Y-X^3)>0\}$,因此
$$\iff\exists A:\qquad\frac{3G}2-\frac{A}2\in\{(X,Y):X(Y-X^3)>0\}$$
设$G(x,y)$,$A(t,t^3)$.
$$\iff\exists t:\qquad
\left(\frac{3 x}{2}-\frac{t}{2}\right)\left(\frac{3 y}{2}-\frac{t^3}{2}-\left(\frac{3 x}{2}-\frac{t}{2}\right)^3\right)>0
$$
展开
\[\iff\exists t:\qquad
(t-3 x)\left(t^3+3 t^2 x-9 t x^2+9 x^3-4 y\right)>0
\]
对于足够大的$t$都成立。
所以$G$的集合是全平面

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 12:10 GMT+8

Powered by Discuz!

Processed in 0.015281 seconds, 36 queries