|
(i)$$2^{2^n}+1\equiv0\pmod p\implies2^{2^n}\equiv-1\pmod p\tag1$$
$$\implies2^{2^{n+1}}=(2^{2^n})^2\equiv1\pmod p\implies\operatorname{ord}_p(2)\mid2^{n+1}$$
假设$\operatorname{ord}_p(2)<2^{n+1}\implies\operatorname{ord}_p(2)\mid2^n\implies2^{2^n}\equiv1\pmod p$与(1)矛盾. 因此必有$\operatorname{ord}_p(2)=2^{n+1}$.
(ii) $F_n$为奇数, 所以$p>2$.
由 (i) 知 $\operatorname{ord}_p(2)=2^{n+1}$, 而$\operatorname{ord}_p(2)\midφ(p)=p-1$, 故$$p\equiv1\pmod{2^{n+1}}$$
当$n≥2$时得到$p\equiv1\pmod8$.
根据Legendre symbol的Theorem 8知, $2$ 是$\operatorname{mod}p$的二次剩余, 由Euler's criterion有$2^{(p-1) / 2} \equiv 1 \pmod p$
(iii) 由(ii)知 $2$ 是$\operatorname{mod}p$的二次剩余, 设$2\equiv r^2\pmod p$, 则$\color{red}{\operatorname{ord}_p(r)=2\operatorname{ord}_p(2)}\midφ(p)=p-1$, 故$$p\equiv1\pmod{2^{n+2}}$$见if a prime $p$ divides a Fermat Number then $p=k\cdot 2^{n+2}+1$? 与 Theorem 6 (Euler-Lucas)
(iv) 设$p$为$F_4$的质因数, 由(iii)知 $p=k\cdot2^6+1$.
$≤256$的$k\cdot2^6+1$型质数只有193, 而193不整除65537, 故65537为质数. |
|