Solve[Sqrt[x] + Sqrt[-x] == 1,x] $x = ± \frac{\rm i}2$
Elementary Functions - Sqrt PDF
$\sqrt z$ is an analytical function of $z$ which is defined over the whole complex $z$-plane.
The function $\sqrt z$ does not have any singularities.
The function $\sqrt z$ has two singular branch points: $z=0$, $z=\infty$.
The function $\sqrt z$ is a single-valued function on the $z$-plane cut along the interval $(-\infty,0)$, where it is continuous from above.
$\sqrt z$ chosen to be the principal branch of the general square root function which has two sheets: $±\sqrt z$.
Functional identities
functions.wolfram.com/01.01.17.0001.01
\[\sqrt z=\sqrt{z - 1}\sqrt{z\over z-1}\text{ for }z\notin(0,1)\]
functions.wolfram.com/01.01.17.0002.01
\[\sqrt{x_1x_2}=\sqrt{x_1}\sqrt{x_2}\text{ for }x_1>0\wedge x_2>0\vee x_1x_2<0\]
plot $|\sqrt z|$

广告: Asymptote 支持复数, 在命令行输入:
> write(sqrt((0,1)));
(0.707106781186547,0.707106781186548)
> write(sqrt((-1,0)));
(0,1)
> write(sqrt((-1,0.001)));
(0.000499999937500027,1.00000012499996)
> write(sqrt((-1,-0.001)));
(0.000499999937500027,-1.00000012499996) |