Forgot password?
 Create new account
View 317|Reply 14

[函数] $\sqrt{x}+\sqrt{-x}=1$的解如何得到?

[Copy link]

134

Threads

760

Posts

5439

Credits

Credits
5439

Show all posts

走走看看 Posted at 2023-2-20 16:12:19 |Read mode
$\sqrt{x}+\sqrt{-x}=1的解$

显然,x是复数。可以像实数一样直接对它进行平方吗?

我看到两处网页,都不是采用平方的方式求解。

67

Threads

435

Posts

4269

Credits

Credits
4269

Show all posts

hejoseph Posted at 2023-2-20 16:47:31
复数开方是多值的,你要规定开平方是哪个值问题才有意义

134

Threads

760

Posts

5439

Credits

Credits
5439

Show all posts

 Author| 走走看看 Posted at 2023-2-20 16:56:24
请看一下 haokan.baidu.com/v?pd=wisenatural&vid=8618075661569169273 不过,它少了一个解。

如果直接平方,反而可以直接得出两个解。

134

Threads

760

Posts

5439

Credits

Credits
5439

Show all posts

 Author| 走走看看 Posted at 2023-2-20 16:58:54
走走看看 发表于 2023-2-20 16:56
请看一下 https://haokan.baidu.com/v?pd=wisenatural&vid=8618075661569169273 不过,它少了一个解。

如 ...

还有一个网页:mbd.baidu.com/newspage/data/videolanding?nid= … 7&sourceFrom=rec

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

hbghlyj Posted at 2023-2-20 18:45:54
Solve[Sqrt[x] + Sqrt[-x] == 1,x] $x = ± \frac{\rm i}2$
Elementary Functions - Sqrt   PDF
$\sqrt z$ is an analytical function of $z$ which is defined over the whole complex $z$-plane.
The function $\sqrt z$ does not have any singularities.
The function $\sqrt z$ has two singular branch points: $z=0$, $z=\infty$.
The function $\sqrt z$ is a single-valued function on the $z$-plane cut along the interval $(-\infty,0)$, where it is continuous from above.
$\sqrt z$ chosen to be the principal branch of the general square root function which has two sheets: $±\sqrt z$.

Functional identities
functions.wolfram.com/01.01.17.0001.01
\[\sqrt z=\sqrt{z - 1}\sqrt{z\over z-1}\text{ for }z\notin(0,1)\]
functions.wolfram.com/01.01.17.0002.01
\[\sqrt{x_1x_2}=\sqrt{x_1}\sqrt{x_2}\text{ for }x_1>0\wedge x_2>0\vee x_1x_2<0\]

plot $|\sqrt z|$

广告: Asymptote 支持复数, 在命令行输入:
> write(sqrt((0,1)));
(0.707106781186547,0.707106781186548)
> write(sqrt((-1,0)));
(0,1)
> write(sqrt((-1,0.001)));
(0.000499999937500027,1.00000012499996)
> write(sqrt((-1,-0.001)));
(0.000499999937500027,-1.00000012499996)

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

hbghlyj Posted at 2023-2-20 22:16:14
Last edited by hbghlyj at 2023-2-22 17:45:00Branch cuts有一个$\sqrt z$的实、虚部的图
text23[1].gif
用Asymptote作图
$\operatorname{Re}\sqrt z$$\operatorname{Im}\sqrt z$

HTML format

HTML format

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2023-2-21 19:35:55
Last edited by isee at 2023-2-21 19:45:00复数的运算法则全部继承实数,自然是可以两边平方的,其次,如果有解为 $x_0$,则 $-x_0$ 必是其解

不过,复数开方是多值的,正如 2# 所言,否则无法继续
isee=freeMaths@知乎

134

Threads

760

Posts

5439

Credits

Credits
5439

Show all posts

 Author| 走走看看 Posted at 2023-2-22 22:56:09
isee 发表于 2023-2-21 19:35
复数的运算法则全部继承实数,自然是可以两边平方的,其次,如果有解为 $x_0$,则 $-x_0$ 必是其解

不过, ...

也就是说,5+12i的平方根有两个,一个是3+2i,另一个是-3-2i。

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2023-2-22 23:57:57
走走看看 发表于 2023-2-22 22:56
也就是说,5+12i的平方根有两个,一个是3+2i,另一个是-3-2i。
嗯,这是自然的,但 $\sqrt{5+12\mathrm i}$ 就不明了,(实数是指正根或零)

复数开方
kuing.cjhb.site/forum.php?mod=redirect&go … 41767&fromuid=15
isee=freeMaths@知乎

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

hbghlyj Posted at 2023-2-23 00:36:43

作个记录

$\arg z\in(-\pi,\pi]$
辐角属于$\left(-\frac\pi2,\frac\pi2\right]$的$z$的平方根是唯一的, 定义为$\sqrt z$, 则$\arg\sqrt z=\frac12\arg z$
所以$\operatorname{Re}\sqrt z\ge0$和$\operatorname{Im}(z)\operatorname{Im}(\sqrt z)\ge0$
$\operatorname{Re}\sqrt z$和$\abs{\sqrt z}$在全平面是连续函数, $\operatorname{Im}\sqrt z$在不含负实数的区域是连续函数

一般地
辐角属于$\left(-\frac\pi n,\frac\pi n\right]$的$z$的$n$次方根是唯一的, 定义为$\sqrt[n]z$, 则$\arg\sqrt[n]z=\frac1n\arg z$
所以$\operatorname{Re}\sqrt[n]z\ge0$和$\operatorname{Im}(z)\operatorname{Im}(\sqrt[n]z)\ge0$

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

hbghlyj Posted at 2023-2-23 00:46:09

补充

isee 发表于 2023-2-21 12:35$\def\Im{\operatorname{Im}}$
复数的运算法则全部继承实数

$\sqrt{z_1}\sqrt{z_2}=\sqrt{z_1z_2}$
$\iff\frac12\arg z_1+\frac12\arg z_2=\frac12\arg(z_1z_2)$
$\iff\arg z_1+\arg z_2=\arg(z_1z_2)$
$\iff\arg z_1+\arg z_2\in(-\pi,\pi]$
所以
$\sqrt{-1}\times\sqrt{-1}\ne\sqrt{(-1)\times(-1)}$
$\sqrt{-i}\times\sqrt{-i}\ne\sqrt{(-i)\times(-i)}$
$$\sqrt{-z}=\cases{-i\sqrt z&if $\Im z>0$\\i\sqrt z&if $\Im z<0$}$$所以方程$\sqrt{z}+\sqrt{-z}=1$可以这样解:
若$\Im z>0$, 则$\sqrt{-z}=-i\sqrt z$, 方程变为$(1-i)\sqrt z=1\implies\sqrt z=\frac1{1-i}\implies z=\frac1{(1-i)^2}=\frac i2$;
若$\Im z<0$, 则$-z$满足同样的方程, 由上面知$-z=\frac i2$, 即$z=-\frac i2$.

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

hbghlyj Posted at 2023-2-23 01:26:30
为何标题文本放在公式里呢

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

hbghlyj Posted at 2023-2-23 02:08:47
Riemann surface of $\sqrt z+\sqrt{-z}$
MSP23401hi35e0fec3becc6000046513bg064722g03.gif
Complex map of $\sqrt z+\sqrt{-z}$
MSP1642053f27faa2g19i100001fe5972fch153b40.gif
可以看到$\sqrt z+\sqrt{-z}$的值域是$\arg z\in(-\frac\pi4,\frac\pi4)$
这是因为:
当$\Im z>0$时$\arg\sqrt z\in(0,\frac\pi2)$, 所以$\arg(\sqrt z+\sqrt{-z})=(1-i)\arg\sqrt z\in(-\frac\pi4,\frac\pi4)$
当$\Im z<0$时$\arg\sqrt z\in(-\frac\pi2,0)$, 所以$\arg(\sqrt z+\sqrt{-z})=(1+i)\arg\sqrt z\in(-\frac\pi4,\frac\pi4)$

3147

Threads

8496

Posts

610K

Credits

Credits
66178
QQ

Show all posts

hbghlyj Posted at 2023-2-23 02:59:55

the principal square roots of complex numbers all lie on one half of $\mathbb C$

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-2-23 13:13:14
给一种逻辑上说得通的答案. 选定函数 $\varphi:\mathbb C\to \mathbb C,z\mapsto z^2$, 求满足
$$
1\in \left(\varphi ^{-1}(z)+\varphi ^{-1}(-z)\right)
$$
的所有 $z\in \mathbb C$?

此处集合的加法是元素加法取并, 如 $\{1,2\}+\{3,4\}=\{4,5,6\}$.

不妨假定 $z=w^2$, 此时只需求使得 $1\in \{\pm w\pm iw\}$ 的所有可行值. 从而 $2w\in \{\pm 1\pm i\}$. 因此 $z\in \{\pm i/2\}$.

例如置 $z=i/2$, 则 $\varphi^{-1}(z):=\{\pm \frac{1+i}{2}\}$, $\varphi^{-1}(z)=\{\pm \frac{1-i}{2}\}$. 若取 $\sqrt{z}=\frac{1+i}{2}$ 与 $\sqrt{-z}=\frac{1-i}{2}$, 和为 $1$.

手机版Mobile version|Leisure Math Forum

2025-4-21 01:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list