Forgot password?
 Register account
View 141|Reply 0

[不等式] 两个复数不等式

[Copy link]

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

lemondian Posted 2024-10-21 10:49 |Read mode
问题1:设$z_1,z_2,z_3$是单位圆周上不同的复数,证明:存在单位圆周上的复数$z$,使得$\dfrac{1}{|z-z_1|^2}+\dfrac{1}{|z-z_2|^2}+\dfrac{1}{|z-z_3|^2}\leqslant \dfrac{9}{4}$。

问题2:设$z_1,z_2,z_3,z_4$是单位圆周上不同的复数,证明:存在单位圆周上的复数$z$,使得$\dfrac{1}{|z-z_1|^2}+\dfrac{1}{|z-z_2|^2}+\dfrac{1}{|z-z_3|^2}+\dfrac{1}{|z-z_4|^2}\leqslant 4$。

Mobile version|Discuz Math Forum

2025-6-6 14:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit