|
Last edited by 青青子衿 at 2021-8-13 22:17:00复系数三次方程\(\,x^3+ax^2+bx+c=0\,\)三个复根在复平面上所表示的三个点中,
存在一个点是另外两个点的中点的充要条件是:\(\,2a^3-9ab+27c=0\,\)
...- a = 3; b = 7;
- (2 a^3 - 9 a b)/27
- sol = NSolve[x^3 + a*x^2 + b*x == (2 a^3 - 9 a b)/27, x];
- ssol = x /. sol
- Show[ListPlot[ReIm[ssol], PlotStyle -> PointSize[Large],
- AspectRatio -> 1], ListLinePlot[ReIm[ssol]]]
Copy the Code- sol = Solve[x^5 + x + 1 == 0, x];
- ssol = x /. sol;
- line = {{0, 0}, #} & /@ ReIm[ssol];
- Show[ListPlot[ReIm[ssol], PlotStyle -> PointSize[Large],
- AspectRatio -> 1], ListLinePlot[#] & /@ line]
Copy the Code |
|