Forgot password?
 Create new account
View 1595|Reply 15

[数列] 三次方程在复平面上的三根与等差中项

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2019-7-21 16:21:27 |Read mode
Last edited by 青青子衿 at 2021-8-13 22:17:00复系数三次方程\(\,x^3+ax^2+bx+c=0\,\)三个复根在复平面上所表示的三个点中,
存在一个点是另外两个点的中点的充要条件是:\(\,2a^3-9ab+27c=0\,\)
...
  1. a = 3; b = 7;
  2. (2 a^3 - 9 a b)/27
  3. sol = NSolve[x^3 + a*x^2 + b*x == (2 a^3 - 9 a b)/27, x];
  4. ssol = x /. sol
  5. Show[ListPlot[ReIm[ssol], PlotStyle -> PointSize[Large],
  6.   AspectRatio -> 1], ListLinePlot[ReIm[ssol]]]
Copy the Code
  1. sol = Solve[x^5 + x + 1 == 0, x];
  2. ssol = x /. sol;
  3. line = {{0, 0}, #} & /@ ReIm[ssol];
  4. Show[ListPlot[ReIm[ssol], PlotStyle -> PointSize[Large],
  5.   AspectRatio -> 1], ListLinePlot[#] & /@ line]
Copy the Code

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2019-7-21 16:35:03
简单:
\begin{align*}
&\iff(x_1+x_2-2x_3)(x_1+x_3-2x_2)(x_3+x_2-2x_1)=0\\
&\iff-2(x_1+x_2+x_3)^3+9(x_1+x_2+x_3)(x_1x_2+x_1x_3+x_2x_3)-27x_1x_2x_3=0\\
&\iff2a^3-9ab+27c=0.
\end{align*}

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2019-7-21 21:25:03
Last edited by 青青子衿 at 2019-7-21 22:22:00回复 2# kuing
复系数三次方程的三根在复平面共线:
\begin{align*}
\boldsymbol{u}&=\begin{pmatrix}
\lambda^2(\lambda-1)^2\\
-(\lambda^3-6\lambda^2+3\lambda+1)(\lambda^3+3\lambda^2-6\lambda+1)\\
(\lambda+1)^2(2\lambda-1)^2 (\lambda-2)^2\\
(\lambda^2-\lambda+ 1)^3
\end{pmatrix}\\
\\
\boldsymbol{v}&=\begin{pmatrix}
a^4(a^2-9b)\\
a^2b^2\\
b^3\\
(4a^3-18ab+27c)c\\
\end{pmatrix}\\
\\
&\quad\boldsymbol{u}^{\rm{T}}\boldsymbol{v}=0
\end{align*}
...
  1. a = 3 - 2 I; b = 1 + 5 I;
  2. sol = NSolve[
  3.    x^3 + a*x^2 + b*x == (
  4.     98 a^3 - 441 a b +
  5.      20  Sqrt[7 (a^6 - 9 a^4 b + 27 a^2 b^2 - 27 b^3)])/1323, x];
  6. ssol = x /. sol
  7. Show[ListPlot[ReIm[ssol], PlotStyle -> PointSize[Large],
  8.   AspectRatio -> 1], ListLinePlot[ReIm[ssol]]]
Copy the Code
...
【疑问】可是这条复平面线段的斜率怎么表示呢?

例子:复系数三次方程\(\,z^3+(3+i)z^2+(1-2i)z=\dfrac{-49+20\sqrt{7}}{147}+\dfrac{4753-920\sqrt{7}}{1323}i\,\)三个根的复平面像三点共线

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2019-7-21 22:32:38
8懂

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2022-8-12 20:17:48
hbghlyj 发表于 2022-8-12 05:35
能否用$a,b,c$表示\begin{vmatrix}x_1&x_2&x_3\\\overline{x_1}&\overline{x_2}&\overline{x_3}\\1&1&1\end{vmatrix}
这个表达式好像和复数点的三角形面积公式有关
zhuanlan.zhihu.com/p/340221585

3148

Threads

8496

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2022-8-12 20:23:09
是啊. 如果用$a,b,c$表示了这个, 就得到三次方程在复平面上的三根共线的条件了.

3148

Threads

8496

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2022-8-12 21:32:02
青青子衿 发表于 2022-8-12 13:17
这个表达式好像和复数点的三角形面积公式有关
zhuanlan.zhihu.com/p/340221585 ...

存档.
发现一处笔误:
定理 复平面上的$\triangle ABC$的心对应的复数为 $I=\frac{aA+bB+cC}{a+b+c}$.

应为

3148

Threads

8496

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2022-8-12 21:49:30
hbghlyj 发表于 2022-8-12 13:23
是啊. 如果用$a,b,c$表示了这个, 就得到三次方程在复平面上的三根共线的条件了. ...
令$a=0$, 则$x_1+x_2+x_3=0$,$$\begin{vmatrix}x_1&x_2&x_3\\\overline{x_1}&\overline{x_2}&\overline{x_3}\\1&1&1\end{vmatrix}=\begin{vmatrix}
x_1 & x_2 & 0 \\
\overline{x_1} & \overline{x_2} & 0 \\
1 & 1 & 3 \\
\end{vmatrix}=-3 (\overline{x_1}x_2-x_1\overline{x_2})$$
令$s=\overline{x_1}x_2-x_1 \overline{x_2}$. 由$$\begin{cases} \overline{x_1}x_2-x_1 \overline{x_2}-s=0\\
x_1 x_2-(x_1+x_2)^2-b=0\\
\overline{x_1} \overline{x_2}-(\overline{x_1}+ \overline{x_2})^2-\bar{b}=0\\
x_1 x_2 \left(x_1+x_2\right)-c=0\\
\overline{x_1} \overline{x_2} \left(\overline{x_1}+\overline{x_2}\right)-\bar{c}=0\end{cases}
$$消去$x_1,x_2,\overline{x_1},\overline{x_2}$得\begin{multline*}s^{12}-4 s^{10} b \bar{b}+6 s^8 b^2 \bar{b}^2+s^6 \left(-4 b^3 \bar{b}^3+2 b^3 \bar{c}^2+2\bar{b}^3 c^2+27 c^2 \bar{c}^2\right)
\\+s^4 b \bar{b} \left(b^3 \bar{b}^3-4 b^3 \bar{c}^2-4 \bar{b}^3 c^2-54 c^2 \bar{c}^2\right)
\\+s^2 b^2 \bar{b}^2 \left(2 c^2 \bar{b}^3+\left(2b^3+27 c^2\right) \bar{c}^2\right)
+\left(\bar{b}^3 c^2-b^3 \bar{c}^2\right)^2=0\end{multline*}令$s=0$得$$\bar{b}^3 c^2-b^3 \bar{c}^2=0$$即$$\frac{b^3}{c^2}\in\Bbb R\tag1\label1$$

3148

Threads

8496

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2022-8-12 22:36:58
Last edited by hbghlyj at 2022-8-13 06:26:00设$x_1,x_2,x_3$在复平面上共线, 若$x_1+x_2+x_3=0$,则这三点的重心是$0$, 所以$x_1,x_2,x_3$在一条经过$0$的直线上, 所以$\arg x_1≡\arg x_2≡\arg x_3\pmodπ$, 令$\arg x_1=θ$, 显然有$\arg b≡2θ\pmodπ$, $\arg c\equiv 3θ\pmodπ$, 所以$\arg(b^3/c^2)\equiv0\pmodπ$, 就得到\eqref{1}式

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2022-8-12 22:47:58
若有四个根,在复平面上表示四个点,该四点共圆的情况是不是也可以推广出来?
\begin{align*}
\begin{vmatrix}z_4\overline z_4 & z_4 & \overline z_4 & 1 \\ z_1\overline z_1 & z_1 & \overline z_1 & 1 \\ z_2\overline z_2 & z_2 & \overline z_2 & 1 \\ z_3\overline z_3 & z_3 & \overline z_3 & 1\end{vmatrix}=0.
\end{align*}

3148

Threads

8496

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2022-8-13 00:32:30
hbghlyj 发表于 2022-8-12 15:36
设$x_1,x_2,x_3$在复平面上共线, 若$x_1+x_2+x_3=0$,则这三点的重心是$0$, 所以$x_1,x_2,x_3$在一条经过$0$ ...

\eqref{1}是“三根共线”的必要不充分条件. 下面要导出充要条件.
设$\dfrac{b^3}{c^2}=k\in\Bbb R$. 由$\dfrac{x_1}{x_2},\dfrac{x_2}{x_1},⋯\in\Bbb R$得
$$\small\left(\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)-\left(\frac{x_2}{x_3}+\frac{x_3}{x_2}\right)\right)^2 \left(\left(\frac{x_2}{x_3}+\frac{x_3}{x_2}\right)-\left(\frac{x_3}{x_1}+\frac{x_1}{x_3}\right)\right)^2 \left(\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)-\left(\frac{x_3}{x_1}+\frac{x_1}{x_3}\right)\right)^2≥0$$
将上式用$b,c$表示: Screenshot 2022-08-12 at 02-45-21 A Proof of the Reflective Property of the Para.png

所以$$\frac{-4 b^9-27 b^6 c^2}{c^6}≥0$$
代入$b^3=kc^2$得$$-4 k^3-27 k^2≥0$$即$$k≤-\frac{27}4$$

3148

Threads

8496

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2022-8-13 00:43:17
猜测: “复平面上三根共线”的充要条件是$$k=\frac{b^3}{c^2}\in\Bbb R\text{ 且 }k\le-\frac{27}4$$
当$k=-\frac{27}4$时, 两个根相等:
这里是$x_2=x_3$
Screenshot 2022-08-12 at 02-45-21 A Proof of the Reflective Property of the Para.png
把$k$增加一点, 就不共线了: Screenshot 2022-08-12 at 02-45-21 A Proof of the Reflective Property of the Para.png
把$k$减少一点, 仍共线: Screenshot 2022-08-12 at 02-45-21 A Proof of the Reflective Property of the Para.png
把$k$减少很多, 仍共线: Screenshot 2022-08-12 at 02-45-21 A Proof of the Reflective Property of the Para.png

3148

Threads

8496

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2022-8-13 00:48:06
青青子衿 发表于 2019-7-21 14:25
回复 2# kuing
...

    a = 3 - 2 I; b = 1 + 5 I;
    sol = NSolve[
       x^3 + a*x^2 + b*x == (
        98 a^3 - 441 a b +
         20  Sqrt[7 (a^6 - 9 a^4 b + 27 a^2 b^2 - 27 b^3)])/1323, x];
    ssol = x /. sol
    Show[ListPlot[ReIm[ssol], PlotStyle -> PointSize[Large],
      AspectRatio -> 1], ListLinePlot[ReIm[ssol]]]
Show[ListPlot[ReIm[ssol], PlotStyle -> PointSize[Large],
  AspectRatio -> 1], ListLinePlot[#] & /@ line]
可以简化为
ListLinePlot[ReIm[ssol], AspectRatio -> 1, PlotMarkers -> Automatic]

3148

Threads

8496

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2022-8-13 13:27:22
hbghlyj 发表于 2022-8-12 17:43
猜测: “复平面上三根共线”的充要条件是$$k=\frac{b^3}{c^2}\in\Bbb R\text{ 且 }k\le-\frac{27}4$$
...
我在MSE发了一个问题: math.stackexchange.com/questions/4510991
用户Somos已经证明了这个.

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2022-9-1 16:47:38
Last edited by 青青子衿 at 2022-9-1 19:29:00
青青子衿 发表于 2022-8-12 22:47
若有四个根,在复平面上表示四个点,该四点共圆的情况是不是也可以推广出来?
\begin{align*}
\begin{vmatrix}z_4\overline z_4 & z_4 & \overline z_4 & 1 \\ z_1\overline z_1 & z_1 & \overline z_1 & 1 \\ z_2\overline z_2 & z_2 & \overline z_2 & 1 \\ z_3\overline z_3 & z_3 & \overline z_3 & 1\end{vmatrix}=0.
\end{align*}
\begin{align*}
z_4=\frac{(a-b)z_2z_3+(c-a)z_1z_3+(b-c)z_1z_2}{(b-a)z_1+(a-c)z_2+(c-b)z_3}
\end{align*}

3148

Threads

8496

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2022-9-6 01:57:46
青青子衿 发表于 2022-9-1 09:47
\begin{align*}
z_4=\frac{(a-b)z_2z_3+(c-a)z_1z_3+(b-c)z_1z_2}{(b-a)z_1+(a-c)z_2+(c-b)z_3}
\end{ali ...
如何像12#一样用方程的系数表示这个条件

手机版Mobile version|Leisure Math Forum

2025-4-21 01:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list