|
en.wikipedia.org/wiki/Mandelbulb
archive.bridgesmathart.org/2010/bridges2010-247.pdf
youtube.com/watch?v=I9EO9-izL9E
(White & Nylander) 关于三维矢量$\langle x, y, z\rangle$的$n$次方公式为
$$\langle x, y, z\rangle^n = r^n\langle\sin(n\theta)\cos(n\phi),\sin(n\theta)\sin(n\phi),\cos(n\theta)\rangle$$
其中\begin{align*}r&=\sqrt{x^2+y^2+z^2} \\
\phi&=\arctan(y/x)=\arg (x+yi) \\
\theta&=\arctan(\sqrt{x^2+y^2}/z)=\arccos(z/r).\end{align*}
是球坐标.
当 $n$ 为奇数时,方程可以化为有理多项式。 例如,对于 $n = 3$,化为:$$\langle x, y, z\rangle^3 = \left\langle\frac{(3z^2 - x^2 - y^2) x (x^2 - 3y^2)}{x^2 + y^2}, \frac{(3z^2 - x^2 - y^2) y (3x^2 - y^2)}{x^2 + y^2}, z (z^2 - 3x^2 - 3y^2)\right\rangle.$$模长满足的关系$|\langle x, y, z\rangle^3|=|\langle x, y, z\rangle|^3$可写成恒等式$$(x^3 - 3xy^2 - 3xz^2)^2 + (y^3 - 3yx^2 + yz^2)^2 + (z^3 - 3zx^2 + zy^2)^2 = (x^2 + y^2 + z^2)^3$$对于 $n = 9$,
$$\langle x, y, z\rangle^9 = \left<x^9 - 36 x^7 (y^2 + z^2) + 126 x^5 (y^2 + z^2)^2 - 84 x^3 (y^2 + z^2)^3 + 9 x (y^2 + z^2)^4,\dots,\dots\right>$$有简短的形式$$\langle x, y, z\rangle^9 = \left<\frac{1}{2} \left(x + i\sqrt{y^2 + z^2}\right)^9 + \frac{1}{2} \left(x - i\sqrt{y^2 + z^2}\right)^9,\dots,\dots\right>$$ |
|