|
由上式推导出的$\kappa$的四次方程,可用“Ferrari法”解得:\begin{aligned}\zeta &=\left(1-e^{2}\right){\frac {z^{2}}{a^{2}}},\\[4pt]\rho &={\frac {1}{6}}\left({\frac {p^{2}}{a^{2}}}+\zeta -e^{4}\right),\\[4pt]s&={\frac {e^{4}\zeta p^{2}}{4\rho ^{3}a^{2}}},\\[4pt]t&={\sqrt[{3}]{1+s+{\sqrt {s(s+2)}}}},\\[4pt]u&=\rho \left(t+1+{\frac {1}{t}}\right),\\[4pt]v&={\sqrt {u^{2}+e^{4}\zeta }},\\[4pt]w&=e^{2}{\frac {u+v-\zeta }{2v}},\\[4pt]\kappa &=1+e^{2}{\frac {{\sqrt {u+v+w^{2}}}+w}{u+v}}.\end{aligned}The application of Ferrari's solution
A number of techniques and algorithms are available but the most accurate, according to Zhu, is the following procedure established by Heikkinen, as cited by Zhu. It is assumed that geodetic parameters $ \{a,\,b,\,e\} $ are known
\begin{aligned}a&=6378137.0{\text{ m. Earth Equatorial Radius}}\\[3pt]b&=6356752.3142{\text{ m. Earth Polar Radius}}\\[3pt]e^{2}&={\frac {a^{2}-b^{2}}{a^{2}}}\\[3pt]e'^{2}&={\frac {a^{2}-b^{2}}{b^{2}}}\\[3pt]p&={\sqrt {X^{2}+Y^{2}}}\\[3pt]F&=54b^{2}Z^{2}\\[3pt]G&=p^{2}+\left(1-e^{2}\right)Z^{2}-e^{2}\left(a^{2}-b^{2}\right)\\[3pt]c&={\frac {e^{4}Fp^{2}}{G^{3}}}\\[3pt]s&={\sqrt[{3}]{1+c+{\sqrt {c^{2}+2c}}}}\\[3pt]k&=s+1+{\frac {1}{s}}\\[3pt]P&={\frac {F}{3k^{2}G^{2}}}\\[3pt]Q&={\sqrt {1+2e^{4}P}}\\[3pt]r_{0}&={\frac {-Pe^{2}p}{1+Q}}+{\sqrt {{\frac {1}{2}}a^{2}\left(1+{\frac {1}{Q}}\right)-{\frac {P\left(1-e^{2}\right)Z^{2}}{Q(1+Q)}}-{\frac {1}{2}}Pp^{2}}}\\[3pt]U&={\sqrt {\left(p-e^{2}r_{0}\right)^{2}+Z^{2}}}\\[3pt]V&={\sqrt {\left(p-e^{2}r_{0}\right)^{2}+\left(1-e^{2}\right)Z^{2}}}\\[3pt]z_{0}&={\frac {b^{2}Z}{aV}}\\[3pt]h&=U\left(1-{\frac {b^{2}}{aV}}\right)\\[3pt]\phi &=\arctan \left[{\frac {Z+e'^{2}z_{0}}{p}}\right]\\[3pt]\lambda &=\operatorname {arctan2} [Y,\,X]\end{aligned}Note: arctan2[Y, X] is the four-quadrant inverse tangent function. |
|