Forgot password?
 Create new account
View 96|Reply 1

[不等式] 球面上有限点集之间的球面距离不等式

[Copy link]

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2024-12-24 06:03:57 |Read mode
The kissing problem in three dimensions, Oleg R. Musin
$\newcommand{\dist}{\mathop{\rm dist}\nolimits}$设 $X = \{x_1, x_2,\ldots, x_n\}$ 为单位球面的任意有限子集。
用 $\phi_{i,j}=\dist(x_i,x_j)$ 表示 $x_i$ 和 $x_j$ 之间的球面距离。那么
$$\sum\limits_{i=1}^n \sum\limits_{j=1}^n P_k(\cos(\phi_{i,j})) \geqslant 0 $$
其中$P_k$为 Legendre 多项式,定义为 $\displaystyle P_n(x) = \sum\limits_{m=0}^{\lfloor \frac{n}{2}\rfloor}(-1)^m\frac{(2n-2m)!}{2^nm!(n-m)!(n-2m)!}x^{n-2m}$.

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-24 06:04:29
证明
设 $X=\{x_1, \ldots, x_n\} \subset {\bf S}^2$ 且 $x_i$ 具有球面极坐标 $(\theta_i,\varphi_i)$。根据余弦定理,我们有:
$$\cos{\phi_{i,j}}=\cos{\theta_i}\,\cos{\theta_j}+\sin{\theta_i}\sin{\theta_j}\cos{\varphi_{i,j}},\quad
\varphi_{i,j}:=\varphi_i-\varphi_j,$$
使用拉普拉斯和勒让德在1782-1785年发现的勒让德多项式加法定理证明):
$$\sum\limits_{i,j}P_k(\cos{\phi_{i,j}})=\sum\limits_{i,j}\sum\limits_{m=0}^kc_{m,k}P_k^m(\cos{\theta_i})P_k^m(\cos{\theta_j})\cos{m\varphi_{i,j}}$$
$$ = \sum\limits_mc_{m,k}\sum\limits_{i,j}u_{m,i}u_{m,j}\cos{m\varphi_{i,j}}, \quad
u_{m,i}=P_k^m(\cos{\theta_i}).$$
让我们证明对于任意实数 $u_1, \ldots, u_n$
$$\sum_{i,j}u_iu_j\cos{m\varphi_{i,j}}\geqslant 0.$$
选择 ${\bf R}^2$ 中的 $n$ 个向量 $v_1, \ldots, v_n$,其坐标为 $v_i=(\cos{m\varphi_i}, \sin{m\varphi_i})$。如果 $v=u_1v_1+\ldots+u_nv_n,$ 那么
$$0\, \leqslant  \, ||v||^2 \, = \, \langle v,v\rangle \, = \, \sum_{i,j}u_iu_j\cos{m\varphi_{i,j}}.$$
这个不等式和 $c_{m,k}>0$ 就完成了证明。 $\square$

手机版Mobile version|Leisure Math Forum

2025-4-21 01:27 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list