Forgot password?
 Create new account
View 275|Reply 5

[函数] 恒成立问题,特别3楼级数用法对吗?

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2023-6-11 16:30:42 |Read mode
Last edited by realnumber at 2023-6-13 09:01:00对任意$x\in $[$-\frac{\pi}{2}$,+∞),有$ax^2\le x(e^x+\cos x-2)$恒成立,求实数a的取值范围.
答案可以猜到是$a\le1$.但过程不好写,直接除以$x^2$,右边最小值求导好像麻烦.

15

Threads

948

Posts

110K

Credits

Credits
12412

Show all posts

色k Posted at 2023-6-11 18:01:17
这名字我喜欢

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2023-6-13 07:22:41
Last edited by realnumber at 2023-6-13 08:41:00新高一的L同学,有两种解法,涉及级数,大学内容我有些遗忘,好像有收敛半径什么的,各位高手看一下,这样做对吗?另一种整理一下再发上来,又以后在自主招生或高考中能用类似的办法解答吗?(本人长期普高,没直接经验)
QQ截图20230613071746--11.png
QQ截图20230613071825--2.png

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2023-6-13 07:56:02
Last edited by realnumber at 2023-6-13 09:15:00问题即为$a\le\frac{e^x+\cos x -2}{x}$
以下证明$x^2\le x(e^x+\cos x -2),x\in $[$-\frac{\pi}{2},+\infty$)
  1.当$x\ge 0$时,设$f(x)=e^x+\cos x -2-x,x\ge0$
$f'(x)=e^x-\sin x -1\ge0$(说明$e^x\ge 1+x\ge1+\sin x,x\ge0$,是常见的不等式,易证)
$f(x)$为R+上增函数,又$f(0)=0$,所以$f(x)\ge0$成立.

  2.当$-\frac{\pi}{2}\le x\le 0$时,设$f(x)=e^x+\cos x -2-x,-\frac{\pi}{2}\le x\le0$
$f'(x)=e^x-\sin x -1,f''(x)=e^x-\cos x $,如图,$y=e^x$下凹,$y=\cos x$上凸,
可见$f''(x)$先正后负,即$f'(x)$先增后减,又$f'(-\frac{\pi}{2})>0,f'(0)=0$,
所以$f'(x)\ge0$在[$-\frac{\pi}{2}, 0$]上恒成立.
又$f(0)=0$,所以$f(x)\le0$成立.
     由1.2.可得$1\le \frac{e^x+\cos x -2}{x},x\in $[$-\frac{\pi}{2},+\infty$)-{0}恒成立.
又由洛必达法则$\lim_{x\to0}\frac{e^x+\cos x -2}{x}=\lim_{x\to0}\frac{e^x-\sin x}{1}=1$,
所以a的取值范围为$a\le 1$.
QQ截图20230613074635--3.png

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-6-13 16:14:25
realnumber 发表于 2023-6-13 07:22
新高一的L同学,有两种解法,涉及级数,大学内容我有些遗忘,好像有收敛半径什么的,各位高手看一下,这样 ...
写的是对的. $e^x$ 系数倒数增长趋势是阶乘, 从而收敛半径无穷, 也就是在任意有限区间上一致收敛. $\cos(x)=\frac12(e^{ix}+e^{-ix})$ 同理.

至于'自主招生或高考中能用类似的办法解答与否', 这不是学术问题, 得问问教育局.

手机版Mobile version|Leisure Math Forum

2025-4-21 19:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list