Forgot password?
 Create new account
View 186|Reply 4

[函数] 恒成立,求取值范围

[Copy link]

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

lemondian Posted at 2022-9-26 14:26:52 |Read mode
Last edited by lemondian at 2022-9-26 15:37:00若$\dfrac{e^x}{a}-ln(x-1)-5+2lna\geqslant 0$恒成立,求$a$的取值范围。

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2022-9-26 15:08:02
ln 没打对
主题分类未选(现在还可以添加标签)

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2022-9-26 15:53:27
\[f(x)=\frac{e^x}{a}-\ln(x-1)-5+2\ln(a)\]
\[f'(x)=\frac{e^x}{a}-\frac{1}{x-1}=0\]
令这个解为$x_0$,则有
\[a=e^{x_0}(x_0-1)\]
\[f(x_0)=\frac{e^{x_0}}{e^{x_0}(x_0-1)}-\ln(x_0-1)-5+2\ln(e^{x_0}(x_0-1))\]
\[=\frac{1}{x_0-1}+2x_0+\ln(x_0-1)-5\ge 0\]
强解这个玩意得到
\[x_0\ge 2 或1<x_0\le 1.26216...\]
反算回来就有
\[a\ge e^2或 0<a\le 0.926223...\]

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

敬畏数学 Posted at 2022-9-26 16:22:32
战巡 发表于 2022-9-26 15:53
\[f(x)=\frac{e^x}{a}-\ln(x-1)-5+2\ln(a)\]
\[f'(x)=\frac{e^x}{a}-\frac{1}{x-1}=0\]
令这个解为$x_0$, ...
又一道错题。

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2022-9-26 16:32:15
题没错啊,这不是解出来了么,软件验证过,结果就是这样的

又不是说非要解析解才算是有解

手机版Mobile version|Leisure Math Forum

2025-4-21 19:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list