Forgot password
 Register account
View 210|Reply 4

[函数] 恒成立,求取值范围

[Copy link]

423

Threads

909

Posts

0

Reputation

Show all posts

lemondian posted 2022-9-26 14:26 |Read mode
Last edited by lemondian 2022-9-26 15:37若$\dfrac{e^x}{a}-ln(x-1)-5+2lna\geqslant 0$恒成立,求$a$的取值范围。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2022-9-26 15:08
ln 没打对
主题分类未选(现在还可以添加标签)

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2022-9-26 15:53
\[f(x)=\frac{e^x}{a}-\ln(x-1)-5+2\ln(a)\]
\[f'(x)=\frac{e^x}{a}-\frac{1}{x-1}=0\]
令这个解为$x_0$,则有
\[a=e^{x_0}(x_0-1)\]
\[f(x_0)=\frac{e^{x_0}}{e^{x_0}(x_0-1)}-\ln(x_0-1)-5+2\ln(e^{x_0}(x_0-1))\]
\[=\frac{1}{x_0-1}+2x_0+\ln(x_0-1)-5\ge 0\]
强解这个玩意得到
\[x_0\ge 2 或1<x_0\le 1.26216...\]
反算回来就有
\[a\ge e^2或 0<a\le 0.926223...\]

209

Threads

949

Posts

2

Reputation

Show all posts

敬畏数学 posted 2022-9-26 16:22
战巡 发表于 2022-9-26 15:53
\[f(x)=\frac{e^x}{a}-\ln(x-1)-5+2\ln(a)\]
\[f'(x)=\frac{e^x}{a}-\frac{1}{x-1}=0\]
令这个解为$x_0$, ...
又一道错题。

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2022-9-26 16:32
题没错啊,这不是解出来了么,软件验证过,结果就是这样的

又不是说非要解析解才算是有解

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 12:10 GMT+8

Powered by Discuz!

Processed in 0.015972 seconds, 35 queries