Forgot password
 Register account
View 358|Reply 7

[不等式] ABC中,求证:$\frac{1}{\tan A}+\frac{1}{\tan B}+\frac{1}{\tan C}\geq\sqrt{3}$

[Copy link]

132

Threads

251

Posts

1

Reputation

Show all posts

郝酒 posted 2024-1-3 16:56 |Read mode
Last edited by 郝酒 2024-1-3 18:04RT,感觉不难,但是思维卡住了。感觉要用$\tan A+\tan B +\tan C=\tan A\tan B\tan C$.

0

Threads

406

Posts

6

Reputation

Show all posts

爪机专用 posted 2024-1-3 17:23 from mobile
显然要限制为锐角三角形,就是用那个式子,右边均值就行了
I am majia of kuing

132

Threads

251

Posts

1

Reputation

Show all posts

original poster 郝酒 posted 2024-1-3 17:59 from mobile
啊,ku版原谅我,写错啦,是证$\frac{1}{\tan A}+\frac{1}{\tan B}+\frac{1}{\tan C}\geq\sqrt{3}$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2024-1-3 19:07
郝酒 发表于 2024-1-3 17:59
啊,ku版原谅我,写错啦,是证$\frac{1}{\tan A}+\frac{1}{\tan B}+\frac{1}{\tan C}\geq\sqrt{3}$ ...
那干嘛不写 cot 呢?还避免了直角的问题,由 `(x+y+z)^2\ge3(xy+yz+zx)`(`\forall x`, `y`, `z\inR`)得
\[(\cot A+\cot B+\cot C)^2\ge3(\cot A\cot B+\cot B\cot C+\cot C\cot A)=3,\]
然后说明一下 `\cot A+\cot B+\cot C` 必为正即可,如果有钝角,比如 `C>90\du`,则 `A<180\du-C`,得 `\cot A>-\cot C`。

132

Threads

251

Posts

1

Reputation

Show all posts

original poster 郝酒 posted 2024-1-3 20:02 from mobile
谢谢ku版,理解了。

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2024-1-4 17:34
kuing 发表于 2024-1-3 19:07
那干嘛不写 cot 呢?还避免了直角的问题,由 `(x+y+z)^2\ge3(xy+yz+zx)`(`\forall x`, `y`, `z\inR`)得 ...
这个处理“正”简洁,将知乎提问区的发过来.




:在三角形 ABC 中求 $\cot A+\cot B+\cot C$ 的最小值.




熟知在三角形 ABC 中 $\cot A\cot B+\cot B\cot C+\cot C\cot A=1$,于是

\begin{align*}
&\quad\;(\cot A+\cot B+\cot C)^2\\[1em]
&\geqslant 3(\cot A\cot B+\cot B\cot C+\cot C\cot A)\\[1em]
&=3
\end{align*}

另一方面

\begin{align*}
&\quad\;\cot A+\cot B+\cot C\\[1em]
&=2R\cdot \left(\frac {\cos A}a+\frac {\cos B}b+\frac {\cos C}c\right)\\[1em]
&=2R\cdot \frac {bc\cos A+ac\cos b+ab\cos c}{abc}\\[1em]
&=R\cdot \frac {a^2+b^2+c^2}{abc}\\[1em]
&>0
\end{align*}

所以 $\cot A+\cot B+\cot C\geqslant \sqrt 3.$



后记:由以上,进一步知

\begin{align*}
\cot A+\cot B+\cot C&=\frac {a^2+b^2+c^2}{4abc/4R}\\[1em]
&=\frac {a^2+b^2+c^2}{4S}
\end{align*}

这样就证得经典的 $a^2+b^2+c^2\geqslant 4\sqrt 3S$ 了…

Comment

猜到你会贴这个😉  posted 2024-1-4 17:39
isee=freeMaths@知乎

83

Threads

49

Posts

0

Reputation

Show all posts

lihpb posted 2024-1-6 11:53

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 14:03 GMT+8

Powered by Discuz!

Processed in 0.029642 seconds, 48 queries