|
Last edited by hbghlyj 2025-3-22 08:06设 $\alpha, \beta, \gamma$ 均为锐角,且 $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 2$。
求证:$\tan\alpha \tan\beta \tan\gamma \leq \frac{\sqrt{2}}{4}$。用非立体几何方法证明
zhidao.baidu.com/question/445831190.html
这种证明,觉得好像可以,但又觉得不可以。
\[
\tan^2 a = \frac{1 - \cos^2 a}{\cos^2 a} = \sec^2 a - 1,
\]
\[
\tan^2 \beta = \frac{1 - \cos^2 \beta}{\cos^2 \beta} = \sec^2 \beta - 1,
\]
\[
\tan^2 \gamma = \frac{1 - \cos^2 \gamma}{\cos^2 \gamma} = \sec^2 \gamma - 1.
\]
由于 $a, \beta, \gamma$ 都是锐角,那么
\[
\sec^2 a - 1 > 0, \quad \sec^2 \beta - 1 > 0, \quad \sec^2 \gamma - 1 > 0.
\]
那么,
\[
\tan^2 a \cdot \tan^2 \beta \cdot \tan^2 \gamma = (\sec^2 a - 1)(\sec^2 \beta - 1)(\sec^2 \gamma - 1) \leq \frac{(\sec^2 a + \sec^2 \beta + \sec^2 \gamma - 3)^3}{27}.
\]
当且仅当 $\sec^2 a - 1 = \sec^2 \beta - 1 = \sec^2 \gamma - 1$ 时取等号。也即是,$\cos a = \cos \beta = \cos \gamma$。
由于
\[
2 = \cos^2 a + \cos^2 \beta + \cos^2 \gamma,
\]
此时,
\[
\cos a = \cos \beta = \cos \gamma = \frac{\sqrt{6}}{3},
\]
故,
\[
\sec a = \sec \beta = \sec \gamma = \frac{3}{\sqrt{6}},
\]
那么,
\[
\frac{(\sec^2 a + \sec^2 \beta + \sec^2 \gamma - 3)^3}{27} = \frac{1}{8}.
\]
因此,
\[
\tan^2 a \cdot \tan^2 \beta \cdot \tan^2 \gamma \leq \frac{1}{8},
\]
也即是,
\[
\tan a \cdot \tan \beta \cdot \tan \gamma \leq \frac{\sqrt{2}}{4}.
\]
请大师们看看!
|
|