Forgot password?
 Register account
View 300|Reply 4

[不等式] 一道三角不等式的证明

[Copy link]

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2025-3-19 21:24 |Read mode
Last edited by hbghlyj 2025-3-22 08:06设 $\alpha, \beta, \gamma$ 均为锐角,且 $\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 2$。  
求证:$\tan\alpha \tan\beta \tan\gamma \leq \frac{\sqrt{2}}{4}$。用非立体几何方法证明

zhidao.baidu.com/question/445831190.html

这种证明,觉得好像可以,但又觉得不可以。

\[
\tan^2 a = \frac{1 - \cos^2 a}{\cos^2 a} = \sec^2 a - 1,
\]
\[
\tan^2 \beta = \frac{1 - \cos^2 \beta}{\cos^2 \beta} = \sec^2 \beta - 1,
\]
\[
\tan^2 \gamma = \frac{1 - \cos^2 \gamma}{\cos^2 \gamma} = \sec^2 \gamma - 1.
\]
由于 $a, \beta, \gamma$ 都是锐角,那么
\[
\sec^2 a - 1 > 0, \quad \sec^2 \beta - 1 > 0, \quad \sec^2 \gamma - 1 > 0.
\]
那么,
\[
\tan^2 a \cdot \tan^2 \beta \cdot \tan^2 \gamma = (\sec^2 a - 1)(\sec^2 \beta - 1)(\sec^2 \gamma - 1) \leq \frac{(\sec^2 a + \sec^2 \beta + \sec^2 \gamma - 3)^3}{27}.
\]
当且仅当 $\sec^2 a - 1 = \sec^2 \beta - 1 = \sec^2 \gamma - 1$ 时取等号。也即是,$\cos a = \cos \beta = \cos \gamma$。

由于
\[
2 = \cos^2 a + \cos^2 \beta + \cos^2 \gamma,
\]
此时,
\[
\cos a = \cos \beta = \cos \gamma = \frac{\sqrt{6}}{3},
\]
故,
\[
\sec a = \sec \beta = \sec \gamma = \frac{3}{\sqrt{6}},
\]
那么,
\[
\frac{(\sec^2 a + \sec^2 \beta + \sec^2 \gamma - 3)^3}{27} = \frac{1}{8}.
\]
因此,
\[
\tan^2 a \cdot \tan^2 \beta \cdot \tan^2 \gamma \leq \frac{1}{8},
\]
也即是,
\[
\tan a \cdot \tan \beta \cdot \tan \gamma \leq \frac{\sqrt{2}}{4}.
\]
请大师们看看!

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

 Author| 走走看看 Posted 2025-3-19 21:34
Last edited by hbghlyj 2025-3-19 21:45如果可以,已知 $\alpha, \beta, \gamma$ 均为锐角,$\tan\alpha \cdot \tan\beta \cdot \tan\gamma = 2\sqrt{2}$,证明 $\cos\alpha + \cos\beta + \cos\gamma > 1$ 就很容易。
\[
\cos\alpha + \cos\beta + \cos\gamma \geq 3(\cos\alpha \cdot \cos\beta \cdot \cos\gamma)^{\frac{1}{3}}
\]
当且仅当 $\cos\alpha = \cos\beta = \cos\gamma$ 时取等,此时 $\alpha = \beta = \gamma$,因此:
\[
\tan\alpha = \tan\beta = \tan\gamma = \sqrt{2}
\]
\[
\therefore \cos\alpha + \cos\beta + \cos\gamma \geq \sqrt{3} > 1
\]

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2025-3-19 21:44
链接的没性趣看,本来就简单题:令 `(a,b,c)=(\sin^2\alpha,\sin^2\beta,\sin^2\gamma)`,由条件得 `a+b+c=1`,则
\[\tan\alpha=\sqrt{\frac a{1-a}}=\sqrt{\frac a{b+c}},\]
所以
\[\tan\alpha\tan\beta\tan\gamma=\sqrt{\frac{abc}{(b+c)(c+a)(a+b)}}\leqslant\sqrt{\frac18}.\]

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

 Author| 走走看看 Posted 2025-3-19 22:39
Last edited by 走走看看 2025-3-20 09:06
kuing 发表于 2025-3-19 21:44
链接的没性趣看,本来就简单题:令 `(a,b,c)=(\sin^2\alpha,\sin^2\beta,\sin^2\gamma)`,由条件得 `a+b+c= ...
Kuing手法,大师的手笔!

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

 Author| 走走看看 Posted 2025-3-20 09:06
-------------------------------------------------------

看来,2楼没有问题。将取等条件优化一下:

当且仅当 $\cos\alpha = \cos\beta = \cos\gamma$ 且$\tan\alpha \cdot \tan\beta \cdot \tan\gamma = 2\sqrt{2}$时取等。

Mobile version|Discuz Math Forum

2025-6-5 01:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit