Forgot password?
 Create new account
View 131|Reply 4

[几何] 锐角三角形的三角不等式证明

[Copy link]

133

Threads

259

Posts

2333

Credits

Credits
2333

Show all posts

郝酒 Posted at 2024-5-3 22:29:44 From the mobile phone |Read mode
锐角三角形ABC,证明以下结论
① $\sum \cos^2 A\cos^2 B\leq \frac{1}{4}\sum \cos^2 A$
②$\sum \frac{\cos^2 A}{\cos^2 B}\geq 4\sum \cos^2 A$

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2024-5-3 23:20:25
① 令 `D=\pi-2A`, `E=\pi-2B`, `F=\pi-2C`,则 `D`, `E`, `F\in(0,\pi)`, `D+E+F=\pi`,所以 `D`, `E`, `F` 构成三角形的三个内角,有
\[\cos A=\cos\frac{\pi-D}2=\sin\frac D2,\]
原不等式等价于
\[\sum\sin^2\frac D2\sin^2\frac E2\leqslant\frac14\sum\sin^2\frac F2,\]
令 `\triangle DEF` 的三边为 `DE=x+y`, `EF=y+z`, `FD=z+x`,则有 `x`, `y`, `z>0` 且有
\[\sin\frac D2=\frac{yz}{(z+x)(x+y)}\]
等三式,所以
\begin{align*}
\sum\sin^2\frac D2\sin^2\frac E2&=\sum\frac{xyz^2}{(x+y)^2(y+z)(z+x)}\\
&\leqslant\frac14\sum\frac{z^2}{(y+z)(z+x)}\\
&=\frac14\sum\frac{xy}{(y+z)(z+x)}\\
&=\frac14\sum\sin^2\frac F2,
\end{align*}
即得证;

② 由柯西及 ① 得
\[\sum\frac{\cos^2A}{\cos^2B}\geqslant\frac{\left(\sum\cos^2A\right)^2}{\sum\cos^2A\cos^2B}\geqslant\frac{\left(\sum\cos^2A\right)^2}{\frac14\sum\cos^2A}=4\sum\cos^2A.\]

Comment

😀  Posted at 2024-5-4 00:19

133

Threads

259

Posts

2333

Credits

Credits
2333

Show all posts

 Author| 郝酒 Posted at 2024-5-4 11:06:00 From the mobile phone
谢谢ku版,锐角三角形这个条件不知道如何想,你这样一处理,很精巧。

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2024-5-4 11:32:48
郝酒 发表于 2024-5-4 11:06
谢谢ku版,锐角三角形这个条件不知道如何想,你这样一处理,很精巧。
我才想起来,其实在《撸题集》P.426~427 题目 4.6.6 里就证过了😅……
里面的证法二感觉更好一些,也是锐角三角形的一种处理方法。

手机版Mobile version|Leisure Math Forum

2025-4-21 01:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list