Forgot password?
 Create new account
View 199|Reply 6

[不等式] 四面体内一点的几何不等式

[Copy link]

83

Threads

51

Posts

763

Credits

Credits
763

Show all posts

lihpb Posted at 2024-6-6 17:14:49 |Read mode
Last edited by lihpb at 2024-6-6 17:23:00四面体内任意点到各底面的距离为\(d_i\)(i=1,2,3,4),四面体外接球半径为R


\(\displaystyle\prod_{i=1}^4d_i\le\frac{R^4}{27}\)

83

Threads

51

Posts

763

Credits

Credits
763

Show all posts

 Author| lihpb Posted at 2024-6-6 17:38:11

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2024-6-23 14:43:56
lihpb 发表于 2024-6-6 17:38
跟这个有点像
https://kuing.cjhb.site/forum.php?mod=viewthread&tid=11723
1# 比那个难多了

要证 1# 等价于证
\[\frac1{S_1S_2S_3S_4}\left(\frac{3V}4\right)^4\leqslant\frac{R^4}{27},\]
其中 `S_i` 为各面面积,`V` 为体积。

完全没思路……

83

Threads

51

Posts

763

Credits

Credits
763

Show all posts

 Author| lihpb Posted at 2024-7-2 09:19:31 From the mobile phone
kuing 发表于 2024-6-23 14:43
1# 比那个难多了

要证 1# 等价于证
你说的那个不等式我知道怎么证,你只要告诉我为什么会等价于你那个不等式就行

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2024-7-2 10:06:13
lihpb 发表于 2024-7-2 09:19
你说的那个不等式我知道怎么证,你只要告诉我为什么会等价于你那个不等式就行
因为
\[\frac13S_1d_1+\frac13S_2d_2+\frac13S_3d_3+\frac13S_4d_4=V,\]
则由均值有
\begin{align*}
d_1d_2d_3d_4&\leqslant\frac1{S_1S_2S_3S_4}\left(\frac{S_1d_1+S_2d_2+S_3d_3+S_4d_4}4\right)^4\\
&=\frac1{S_1S_2S_3S_4}\left(\frac{3V}4\right)^4,\quad(*)
\end{align*}
等号必然能取到,即 (*) 是 `d_1d_2d_3d_4` 的最大值,因此要证 1# 等价于证 3#。

83

Threads

51

Posts

763

Credits

Credits
763

Show all posts

 Author| lihpb Posted at 2024-7-7 16:37:15
谢谢,麻烦帮我看看下面这两个
证不出来也没关系,帮我验证下就行,或者只证n=3

kuing.cjhb.site/forum.php?mod=viewthread& … 5&extra=page%3D1

kuing.cjhb.site/forum.php?mod=viewthread& … 2&extra=page%3D1

Comment

建议直接贴出 $n=3$ 时的不等式, 帮忙规避角标出错之嫌. 不论是 $3\to n$ 的推广, 还是 $n\to 3$ 的化简, 都容易出错.  Posted at 2024-7-7 17:04

手机版Mobile version|Leisure Math Forum

2025-4-21 01:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list