Forgot password?
 Create new account
View 128|Reply 2

[函数] 二次函数的参数取值范围问题

[Copy link]

48

Threads

47

Posts

685

Credits

Credits
685

Show all posts

snowblink Posted at 2024-9-29 11:33:02 |Read mode
己知关于 $x$ 的不等式 $a x ^ { 2 } + b x + c > 0 ( a , b , c \in R )$ 的解集为 $( - 2 , 4 ) $, 则关于 $x$ 的不等式 $\dfrac { c x ^ { 2 } + | a x + b | } { a x - c + b } \leq 0$ 的解集为

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2024-9-29 12:03:44
$ax^2+bx+c>0$的解为$(-2,4)$,说明$a<0$,且$ax^2+bx+c=0$的解为$-2,4$

于是
\[x^2+\frac{b}{a}x+\frac{c}{a}<0\]
\[\frac{b}{a}=-2,\frac{c}{a}=-8\]

\[\frac{cx^2+|ax+b|}{ax-c+b}=\frac{\frac{c}{a}x^2-|\frac{ax+b}{a}|}{x-\frac{c}{a}+\frac{b}{a}}=\frac{-8x^2-|x-2|}{x+6}\le 0\]
\[x>-6\]

Comment

太强了  Posted at 2024-9-29 12:44

手机版Mobile version|Leisure Math Forum

2025-4-21 22:22 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list