Forgot password?
 Create new account
View 4030|Reply 10

[函数] 又一道绝对值二次函数的最大值问题证明

[Copy link]

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

敬畏数学 Posted at 2016-12-23 16:03:52 |Read mode
Last edited by 敬畏数学 at 2018-1-15 09:54:00$f(x)=x^2+ax+b,M(a,b)$为$|f(x)|在[-1,1]$的最大值,证明:
(1)当$|a|≥2时,M(a,b)≥2$
(2)当$M(a,b)≤2时,求|a|+|b|$的最大值
第一问用反证法可以。问题是第二问,应该也是$f(-1),f(1)$,想借助$f(-1),f(1)$表示a,b但最后放缩不到,请教!

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2016-12-23 16:39:57

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

 Author| 敬畏数学 Posted at 2016-12-24 12:20:27
Last edited by 敬畏数学 at 2018-1-15 09:52:00回复 2# kuing
OK!那个很重要的不等式很长时间没有用生疏了,其实放缩时只有这样,同时出现了$|x+y|及|x-y|$。谢谢。。。

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

 Author| 敬畏数学 Posted at 2018-1-14 15:04:13
Last edited by 敬畏数学 at 2018-1-14 15:10:00回复 1# 敬畏数学
其实,抓住在区端点取等,这类问题难度可控了。至于第二小问,把a,b用端点表示后,把端点的约束不等式表示出来就是典型的线性规划问题。也可以直接讨论两端点大小去绝对值。两法本质相近。但是直接放缩等号不可取,所以失效!那个两数最大值的恒等表示简洁。

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted at 2018-1-14 16:28:01
这个是浙江的一个考题,少打个绝对值符号。
直接用分类讨论也可以做,用函数与区间的相对运动也可以做。
PS:用区间相对运动做没几句话完事,不知道阅卷给不给分。。。

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

 Author| 敬畏数学 Posted at 2018-1-15 09:41:41
回复 5# 游客
愿闻其详!

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

 Author| 敬畏数学 Posted at 2018-1-15 09:59:29
出现|a|+|b|这类绝对值不等式这样处理?如果是|a|+|b|+|c|如何操作?四个呢?。。。。。

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted at 2018-4-18 14:58:39
Last edited by 游客 at 2018-4-18 15:09:00lal+lbl+lcl+ldl=max{la±bl+lcl+ldl}=max{la±b±cl+ldl}=max{la±b±c±dl}=...

(2)   lal+lbl=max{lb±al}=max{lf(±1)-1l}∈[0,3].
(1)   lal≥2→△y≥4→M≥2.

这样做,考试给分么?

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

 Author| 敬畏数学 Posted at 2018-4-18 15:13:36
回复 8# 游客
精准解法,还有不胜之理!

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2020-11-2 00:45:16
【绝对值】【二次函数】
Mark一下
artofproblemsolving.com/community/c6h582968

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2020-11-2 01:37:15
回复 10# 青青子衿

这个我在《憋间》2011 年第 5 期(总第 5 期)P.12 下方的定理 2.2.5 撸过呢

手机版Mobile version|Leisure Math Forum

2025-4-21 14:37 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list