Forgot password?
 Create new account
View 200|Reply 3

[不等式] 绝对值不等式

[Copy link]

8

Threads

8

Posts

195

Credits

Credits
195

Show all posts

创之谜 Posted at 2025-3-4 18:06:36 |Read mode
$1.求证\lvert \dfrac{a+b}{a-b} \rvert+\lvert \dfrac{b+c}{b-c} \rvert+\lvert \dfrac{c+a}{c-a} \rvert \ge2 (a,b,c互不相等)$
$2.已知\sum\limits_{i=1}^n{x_{i}}=0,\sum\limits_{i=1}^n{x_{i}^2}=1(n\ge3)$ $求\sum\limits_{i=1}^n{\vert x_{i}\vert}最小值$

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2025-3-4 20:07:07

\[f(x)=\left|\frac{a+b-x}{a-b}\right|+\left|\frac{b+c-x}{b-c}\right|+\left|\frac{c+a-x}{c-a}\right|,\]
由 `f(x)` 是折线函数且开口向上,则 `f(x)` 必在折点处取得最小值,而显然 `f(x)` 有三个折点 `x=a+b`, `b+c`, `c+a`,即有
\[f(x)\geqslant\min\{f(a+b),f(b+c),f(c+a)\},\]
由均值有
\[f(a+b)=\left|\frac{c-a}{b-c}\right|+\left|\frac{c-b}{c-a}\right|\geqslant2,\]
同理可得 `f(b+c)\geqslant2`, `f(c+a)\geqslant2`,所以 `f(x)\geqslant2` 恒成立,令 `x=0`,即得待证的不等式。

8

Threads

8

Posts

195

Credits

Credits
195

Show all posts

 Author| 创之谜 Posted at 2025-3-5 18:47:51
Last edited by 创之谜 at 2025-3-5 20:48:41@kuing
那么第二问呢?

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2025-3-6 02:18:06
创之谜 发表于 2025-3-5 18:47
@kuing
那么第二问呢?
不妨设 `x_1\leqslant x_2\leqslant\cdots\leqslant x_k\leqslant0\leqslant x_{k+1}\leqslant x_{k+2}\leqslant\cdots\leqslant x_n`,由和为零可设
\begin{align*}
x_1+x_2+\cdots+x_k&=S,\\
x_{k+1}+x_{k+2}+\cdots+x_n&=-S,
\end{align*}
则有
\begin{align*}
x_1^2+x_2^2+\cdots+x_k^2&\leqslant(x_1+x_2+\cdots+x_k)^2=S^2,\\
x_{k+1}^2+x_{k+2}^2+\cdots+x_n^2&\leqslant(x_{k+1}+x_{k+2}+\cdots+x_n)^2=S^2,
\end{align*}
相加得
\[1\leqslant2S^2\riff\abs S\geqslant\frac1{\sqrt2},\]
于是
\[\abs{x_1}+\abs{x_2}+\cdots+\abs{x_n}=\abs S+\abs{-S}=2\abs S\geqslant\sqrt2,\]
当 `x_i` 中一个为 `-1/\sqrt2` 一个为 `1/\sqrt2` 其余全为零时取等,所以最小值就是 `\sqrt2`。

手机版Mobile version|Leisure Math Forum

2025-4-20 22:22 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list