Forgot password?
 Register account
View 101|Reply 0

[几何] 一个对合,它的两个不动点,与任意一组对合点,构成一个调和点列

[Copy link]

3157

Threads

7925

Posts

610K

Credits

Credits
64218
QQ

Show all posts

hbghlyj Posted 2025-4-20 02:03 |Read mode
Last edited by hbghlyj 2025-4-27 22:15证明:设A,B为一组对应点,C,D为不动点,$(AC;BD)=(f(A)f(C);f(B)f(D))=(BC;AD)$
\[(BC;AD)=\frac1{(CB;AD)}=\frac1{1-(CA,BD)},(AC;BD)=\frac1{1-\frac1{(AC;BD)}}\Rightarrow(AC;BD)=2\Rightarrow (AB,CD)=-1\]
调和专题性质4:M是AB中点,$MC\cdot MD=MB^2\Leftrightarrow$与l在B相切的圆与过CD的圆的根轴过M.
我们站在对合的角度来看,四边形生成的调和做了什么?E和F都是对合不动点

Mobile version|Discuz Math Forum

2025-6-6 14:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit