Forgot password?
 Register account
View 3722|Reply 1

[数论] 求判别式

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-5-16 05:08 |Read mode
Last edited by hbghlyj 2025-5-25 19:56如果多项式有根$α_1, α_2,\dots,α_n$,那么判别式$=\prod_{i<j}(α_i - α_j)^2$。不过当$n$较大时直接计算这个比较麻烦

当 $n = 2$ 时\(f(x) = x^2 + ax + b\)的判别式为$$(-1)^{\frac{2(2-1)}{2}} \left( (-1)^{1-2}(2-1)^{2-1}a^2 + 2^2b^{2-1} \right)= a^2 - 4b$$
当 $n = 3$ 时\(f(x) = x^3 + ax + b\)的判别式为$$(-1)^{\frac{3(3-1)}{2}} \left( (-1)^{1-3}(3-1)^{3-1}a^3 + 3^3b^{3-1} \right)= -4a^3 - 27b^2$$
当 $n > 3$ 时求证 $f(x)=x^n+ax+b$ 的判别式$= (-1)^\frac{n(n-1)}{2}\left( (-1)^{1-n}(n-1)^{n-1}a^n+n^nb^{n-1}\right)$

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2025-5-25 19:23
利用判别式与结式的关系:
$$\Delta(f)=(-1)^{\frac{n(n-1)}{2}}\mathbf{res}(f,f')$$
$f'=nx^{n-1}+a$,其根为 $x_i\text{ }(i=1,2,\ldots,n-1)$
那么 $$\mathbf{res}(f,f')=n^n\prod_{i=1}^{n-1}f(x_i)$$
而 $f(x_i)=x_i^{n-1}\cdot x_i+ax_i+b=\frac{a(n-1)}{n}x_i+b$
所以 $\prod_{i=1}^{n-1}f(x_i)=\left(\frac{a(n-1)}{n}\right)^{n-1}\prod_{i=1}^{n-1}\left(x_i+\frac{bn}{a(n-1)}\right)$
又 $\prod_{i=1}^{n-1}(x-x_i)=x^{n-1}+a/n$,代入 $x=-\frac{bn}{a(n-1)}$,得 $\prod_{i=1}^{n-1}\left(-\frac{bn}{a(n-1)}-x_i\right)=\left(-\frac{bn}{a(n-1)}\right)^{n-1}+a/n$
于是 $$
\begin{align*}
\Delta(f)&=(-1)^{\frac{n(n-1)}{2}}n^n\left(\frac{a(n-1)}{n}\right)^{n-1}(-1)^{n-1}\left[\left(-\frac{bn}{a(n-1)}\right)^{n-1}+a/n\right]\\
&=(-1)^{\frac{n(n-1)}{2}}\left((-1)^{n-1}(n-1)^{n-1}a^n+n^nb^{n-1}\right)
\end{align*}
$$
Wir müssen wissen, wir werden wissen.

Mobile version|Discuz Math Forum

2025-5-31 10:43 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit