|
Last edited by hbghlyj 2022-12-14 22:51$p$为奇素数,记 $\mathbf{A} =\{x |x \text{是模}p\text{的二次剩余}\}$, $\mathbf{B} =\{x|x \text{是模} p \text{的二次非剩余}\}$
记$z=\cos \frac{2\pi}p+i\sin\frac{2\pi}p$
记$1,2,\dots,p-1$中模$p$的二次剩余为$x_1,x_2\cdots x_{\frac{p-1}2}$,二次非剩余为$y_1,y_2,...,y_\frac{p-1}2$,
设$u=z^{x_1}+z^{x_2}+\dots+z^{x_\frac{p-1}2},v=z^{y_1}+z^{y_2}+\dots+z^{y_\frac{p-1}2}$.
由$z^p=1$知,$1+z+\cdots+z^{p-1}=0$,得\[\tag*{$\Large①$}u+v=-1\]
(1)当$p\equiv 1\pmod 4$时,$u=\frac{-1+\sqrt p}2,v=\frac{-1-\sqrt p}2$
证明当$p\equiv 1\pmod 4$时, $-1\in \mathbf{A} $, 所以$x_i\in\mathbf{A}\Leftrightarrow p-x_i\in\mathbf{A}$.
所以$u=\left(z^{x_1}+z^{p-x_1}\right)+\left(z^{x_2}+z^{p-x_2}\right)+\cdots+\left(z^{x_\frac{p-1}4}+z^{p-x_\frac{p-1}4}\right)$
同样$v=\left(z^{y_1}+z^{p-y_1}\right)+\left(z^{y_2}+z^{p-y_2}\right)+\cdots+\left(z^{y_\frac{p-1}4}+z^{p-y_\frac{p-1}4}\right)$
由于$\left(z^{x_m}+z^{p-x_m}\right)\left(z^{y_n}+z^{p-y_n}\right)=\left(z^{x_m+y_n}+z^{p-\left(x_m+y_n\right)}\right)+\left(z^{x_m-y_n}+z^{p-\left(x_m-y_n\right)}\right)(1\leq m,n\leq \frac{p-1}4)$
因此,$u\times v$展开式中共有$\left(\frac{p-1}2\right)^2$项,$\frac12\left(\frac{p-1}2\right)^2$对,每对两项指数之和为$p$,有$\frac{p-1}2$个不同的对.根据对称性,每一个不同的对出现的次数为$\frac{\frac12\left(\frac{p-1}2\right)^2}{\frac{p-1}2}=\frac{p-1}4$
于是\begin{align}\nonumber uv&= \frac{p - 1}4\bigl[ \left( {{z^{{x_1}}} + {z^{p - {x_1}}}} \right) + \cdots + \left( {z^{{x_{\frac{{p - 1}}{4}}}}} + {z^{p - x_{\frac{p - 1}4}}} \right)
\\\nonumber&\hphantom{= \frac{{p - 1}}{4}\bigl[ }+ \left( {{z^{{y_1}}} + {z^{p - {y_1}}}} \right) + \cdots + \left( {{z^{{y_{\frac{{p - 1}}{4}}}}} + {z^{p - {y_{\frac{{p - 1}}{4}}}}}} \right) \bigr]
\\\nonumber&=\frac{p-1}4(u+v)
\\\tag*{$\Large②$}&=-\frac{p-1}4
\end{align}
由①②易得$u=\frac{-1+\sqrt p}2,v=\frac{-1-\sqrt p}2$
(2)当$p \equiv -1 \pmod 4时,u=\frac{-1+\sqrt{p}i}2,v=\frac{-1-\sqrt{p}i}2$
证明由于$z^{x_m}\cdot v(1\leq m\leq{p-1}2$展开式中有且仅有一项$z^{x_m}\cdot z^{p-x_m}=z^p=1$,所以uv的展开式中共有$\frac{p-1}2$个1,余下的$\left[\left(\frac{p-1}2\right)^2-\frac{p-1}2\right]$项中,每对$z^k+z^{p-k}\left(k\in \mathbf{A}\right)$出现的次数为$\frac{{\frac{{p - 1}}{2} \bullet \frac{{p - 3}}{2}}}{{p - 1}} = \frac{{p - 3}}{4}.$于是$$\tag*{$\Large③$}uv = \frac{{p - 1}}{2} + \frac{{p - 3}}{4}\left( {u + v} \right) = \frac{{p + 1}}{4}$$
由①③易得$u=\frac{-1+\sqrt{pi}}2,v=\frac{-1-\sqrt{pi}}2$
设素数$p\equiv 1\pmod 4,f_1=\sum_{\substack{1\le x\le p-1,\\2|x,x\in\mathbf{A}}}\cos\frac{x\pi}p$,$f_2=\sum_{\substack{1\le x\le p-1,\\2|x+1,x\in\mathbf{A}}}\cos\frac{x\pi}p$,$f_3=\sum_{\substack{1\le x\le p-1,\\2|x,x\in\mathbf{B}}}\cos\frac{x\pi}p$,$f_4=\sum_{\substack{1\le x\le p-1,\\2|x+1,x\in\mathbf{B}}}\cos\frac{x\pi}p$,则(1)当$p\equiv 1\pmod 8$时,$f_1=\frac{-1+\sqrt p}4,f_2=\frac{1-\sqrt p}4.f_3=\frac{-1-\sqrt p}4,f_4=\frac{1+\sqrt p}4$.(2)当$p\equiv 5\pmod 8$时,$f_1=\frac{-1-\sqrt p}4,f_2=\frac{1+\sqrt p}4.f_3=\frac{-1+\sqrt p}4,f_4=\frac{1-\sqrt p}4$.
证明,由于$\sum_{\substack{1\le x\le p-1,\\2|x,x\in\mathbf{A}}}\cos \frac{2x\pi}p=\frac{-1+\sqrt p}2,\sum_{\substack{1\le x\le p-1,\\2|x,x\in\mathbf{B}}}\cos\frac{2x\pi}p=\frac{-1-\sqrt p}2$
由$\cos \frac{(p-a)2\pi}4=\cos \frac{2a\pi}p$有
$\sum_{\substack{1\le x\le p-1,\\2|x,x\in\mathbf{A}}}\cos\frac{x\pi}p=\frac{-1+\sqrt p}4,\sum_{\substack{1\le x\le p-1,\\2|x,x\in\mathbf{B}}}\cos\frac{x\pi}p=\frac{-1-\sqrt p}4$
(1)$p\equiv 1\pmod 8$时,$\left(\frac{2r}p\right)=\left(\frac2p\right)\left(\frac rp\right)=\left(\frac rp\right)$
故$\sum_{\substack{1\le x\le p-1,\\2|x,x\in\mathbf{A}}}\cos\frac{x\pi}p=\frac{\sqrt p-1}4,\sum_{\substack{1\le x\le p-1,\\2|x,x\in\mathbf{B}}}\cos\frac{x\pi}p=\frac{-\sqrt p-1}4$,注意到$\cos\frac{\left(p-a\right)\pi}p=-\cos\frac{a\pi}p$,有
$f_2=-f_1=\frac{1-\sqrt p}4,f_4=-f_3=\frac{1+\sqrt p}4.$
(2)$p\equiv 5\pmod 8$时,$\left(\frac{2r}p\right)=\left(\frac2p\right)\left(\frac rp\right)=-\left(\frac rp\right)$
设素数$p\equiv -1\pmod 4$,则$\sum_{\substack{1\le x\le p-1,\\x\in\mathbf{A}}}\sin \frac{2x\pi}p=\frac{\sqrt p}2.$
上式也可以写成$p\equiv -1\pmod 4$,则$\sum_{n=1}^{\frac{p-1}2}\sin \frac{2n^2\pi}p=\frac{\sqrt p}2.$ |
|