|
kuing
Posted 2023-3-16 00:15
由
\[3\theta_2=\frac\pi2+\arccos\frac{17}{7\sqrt7},\]
得
\[\frac{17}{7\sqrt7}=\sin(3\theta_2)=3\sin\theta_2-4\sin^3\theta_2,\]
记 `\sin\theta_2=t`,上式化为
\[\frac{17}{7\sqrt7}=3t-4t^3\iff\left(t-\frac1{\sqrt7}\right)\left(4t^2+\frac4{\sqrt7}t-\frac{17}7\right)=0,\]
解得
\[t=\frac1{\sqrt7}~\text{或}~t=\frac{-\sqrt7\pm3\sqrt{14}}{14},\]
显然 `\pi/6<\theta_2<\pi/3`,故舍去第一个根及负根,只剩
\[\sin\theta_2=t=\frac{-\sqrt7+3\sqrt{14}}{14},\]
对于另外两个,显然 `\theta_1=2\theta_2` 及易证 `\theta_3=\pi/2-\theta_2`,于是
\begin{align*}
\cos\theta_1&=1-2\sin^2\theta_2=\frac{-5+6\sqrt2}{14},\\
\cos\theta_3&=\sin\theta_2,
\end{align*}
代回去算就行了。 |
|