Forgot password?
 Register account
View 334|Reply 4

[几何] 两碗球

[Copy link]

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

hjfmhh Posted 2023-3-22 19:03 |Read mode

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-22 21:03
8.
以$(±1,±1,-1)$为中心, $1$为半径的四球循环相切.
以原点为中心, $\sqrt3+1$为半径的半球与四球相切.
半球容积为$\frac{2π}3(1 + \sqrt3)^3=\frac{4π}3(5 + 3\sqrt3)$

16.
以$A(-1, 1, 1),B(1, -1, 1),C(1, 1, -1)$为中心, $\sqrt2$为半径的球两两相切.
平面$x + y + z = \sqrt6+1$与它们均相切.
从原点到这平面的垂足$D\left(\frac{\sqrt6+1}3,\frac{\sqrt6+1}3,\frac{\sqrt6+1}3\right)$
$E$为直线$DA$与球$A$的较远交点
则以$D$为中心,过$E$的球与三球相切.
其半径$DE=DA+\sqrt2=\sqrt{14\over3}+\sqrt2$
$r:\sqrt2=6:DE\implies r={6\sqrt2\over DE}=\frac32 (\sqrt{21} - 3)$

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2023-3-22 23:09
hbghlyj 发表于 2023-3-22 21:03
8.
以$(±1,±1,-1)$为中心, $1$为半径的四球循环相切.
以原点为中心, $\sqrt3+1$为半径的半球与四球相切.
I`]Y`@VJ175[(NWXB4DYU84.png 这是答案,好像不一样,请问你是怎么建系得到哪些坐标的和平面方程的,能画个示意图吗?谢谢

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-23 02:37
hjfmhh 发表于 2023-3-22 16:09
这是答案,好像不一样,请问你是怎么建系得到哪些坐标的和平面方程的,能画个示意图吗?谢谢 ...
16. 我当成大球与3球相切了. 我看错了. 抱歉

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2023-3-23 11:42
hbghlyj 发表于 2023-3-23 02:37
16. 我当成大球与3球相切了. 我看错了. 抱歉
这题建系还好做吗?

Mobile version|Discuz Math Forum

2025-5-31 10:57 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit