Forgot password?
 Register account
View 273|Reply 4

[函数] 求证 $\tan 15^\circ=\tan 3^\circ\tan39^\circ\tan81^\circ$

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35049

Show all posts

isee Posted 2023-4-3 01:13 |Read mode
源自知乎提问


求证: $\tan 15^\circ=\tan 3^\circ\tan39^\circ\tan81^\circ$.





本以为只需简单说明右边也是 $2-\sqrt 3$ 即可,结果被狠狠打脸了,思考良久如下.

首先由正切三倍角公式知 $\tan (3\times 21^\circ)=\tan21^\circ\tan39^\circ\tan81^\circ$ ,及合分比性质,于是\begin{gather*}
\tan 15^\circ=\tan 3^\circ\tan39^\circ\tan81^\circ,\\[1em]
\iff \tan15^\circ\tan 21^\circ=\tan 3^\circ\tan63^\circ,\\[1em]
\iff \frac{\sin15^\circ\sin21^\circ}{\cos15^\circ\cos21^\circ}=\frac{\sin63^\circ\sin3^\circ}{\cos63^\circ\cos3^\circ},\\[1em]
{\small \iff \frac{\sin15^\circ\sin21^\circ+\cos15^\circ\cos21^\circ}{\sin15^\circ\sin21^\circ-\cos15^\circ\cos21^\circ}=\frac{\sin63^\circ\sin3^\circ+\cos63^\circ\cos3^\circ}{\sin63^\circ\sin3^\circ-\cos63^\circ\cos3^\circ},}\\[1em]
\iff\frac{\cos6^\circ}{\cos36^\circ}=\frac{\cos60^\circ}{\cos66^\circ},\\[1em]
\iff \sin 54^\circ=2\cos 66^\circ\cos 6^\circ,
\end{gather*}局面终于明朗了…

两端同乘 $2\cos 54^\circ$ 即得 $\sin 108^\circ=4\cos 6^\circ\cos 54^\circ\cos 66^\circ$ 亦\[\cos 18^\circ=4\cos 6^\circ\cos 54^\circ\cos 66^\circ\]这就是$\cos (3\times 6^\circ)$的三倍角公式,得证.
isee=freeMaths@知乎

686

Threads

110K

Posts

910K

Credits

Credits
91243
QQ

Show all posts

kuing Posted 2023-4-3 01:29
这个合分比用得挺漂亮😃

PS、这里够宽不需要 \small

Comment

就那样吧,哈哈  Posted 2023-4-3 21:50

686

Threads

110K

Posts

910K

Credits

Credits
91243
QQ

Show all posts

kuing Posted 2023-4-3 02:14
现学现卖,既然两边双 tan 就可以有这样的合分比手法,不如一开始就用,就省了第一步 tan 的三倍角:
\begin{align*}
\text{原式}&\iff\frac{\tan15\du}{\tan3\du}=\frac{\tan39\du}{\tan9\du}\\
&\iff\frac{\sin15\du\cos3\du}{\cos15\du\sin3\du}=\frac{\sin39\du\cos9\du}{\cos39\du\sin9\du}\\
&\iff\frac{\sin15\du\cos3\du+\cos15\du\sin3\du}{\sin15\du\cos3\du-\cos15\du\sin3\du}=\frac{\sin39\du\cos9\du+\cos39\du\sin9\du}{\sin39\du\cos9\du-\cos39\du\sin9\du}\\
&\iff\frac{\sin18\du}{\sin12\du}=2\sin48\du\\
&\iff2\sin18\du\sin72\du=4\sin12\du\sin48\du\sin72\du\\
&\iff\sin(3\times12\du)=4\sin12\du\sin(60\du-12\du)\sin(60\du+12\du).
\end{align*}

770

Threads

4692

Posts

310K

Credits

Credits
35049

Show all posts

 Author| isee Posted 2023-4-3 21:49
kuing 发表于 2023-4-3 02:14
现学现卖,既然两边双 tan 就可以有这样的合分比手法,不如一开始就用,就省了第一步 tan 的三倍角:
\begi ...
这种用法在八项积为1比较实用,至少在我没有思想时往往有奇效
isee=freeMaths@知乎

Mobile version|Discuz Math Forum

2025-6-3 06:48 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit